試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)閱讀材料:三角形的重心、垂心、內(nèi)心和外心是與三角形有關(guān)的四個特殊點,它們與三角形的頂點或邊都具有一些特殊的性質(zhì).
(一)三角形的“四心”
1.三角形的重心:三角形三條中線的交點叫做三角形的重心,重心到頂點的距離與重心到對邊中點的距離之比為2:1.
2.三角形的垂心:三角形三邊上的高的交點叫做三角形的垂心,垂心和頂點的連線與對邊垂直.
3.三角形的內(nèi)心:三角形三條內(nèi)角平分線的交點叫做三角形的內(nèi)心,也就是內(nèi)切圓的圓心,三角形的內(nèi)心到三邊的距離相等,都等于內(nèi)切圓半徑r.
4三角形的外心:三角形三條邊的垂直平分線的交點叫做三角形的外心,也就是三角形外接圓的圓心,它到三角形三個頂點的距離相等.
(二)三角形“四心”的向量表示
在△ABC中,角A,B,C所對的邊分別為a,b,c.
1.三角形的重心:
OA
+
OB
+
OC
=
0
?
O
是△ABC的重心.
2.三角形的垂心:
OA
?
OB
=
OB
?
OC
=
OC
?
OA
?
O
是△ABC的垂心.
3.三角形的內(nèi)心:
a
OA
+
b
OB
+
c
OC
=
0
?
O
是△ABC的內(nèi)心.
4.三角形的外心:
|
OA
|
=
|
OB
|
=
|
OC
|
?
O
是△ABC的外心.
研究三角形“四心”的向量表示,我們就可以把與三角形“四心”有關(guān)的問題轉(zhuǎn)化為向量問題,充分利用平面向量的相關(guān)知識解決三角形的問題,這在一定程度上發(fā)揮了平面向量的工具作用,也很好地體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
結(jié)合閱讀材料回答下面的問題:
(1)在△ABC中,若A(1,1),B(3,5),C(2,6),求△ABC的重心G的坐標;
(2)如圖所示,在非等腰的銳角△ABC中,已知點H是△ABC的垂心,點O是△ABC的外心.若M是BC的中點,求證:OM∥AH且OM=
1
2
AH.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:262引用:2難度:0.5
相似題
  • 1.已知O是△ABC所在平面上的一點,A、B、C所對的邊的分別為a,b,c,若
    a
    OA
    +
    b
    OB
    +
    c
    OC
    =
    0
    ,則O是△ABC的(  )

    發(fā)布:2024/8/27 1:0:9組卷:497引用:7難度:0.7
  • 2.在△ABC中,設(shè)點A(xA,yA),B(xB,yB),C(xC,yC),利用二次函數(shù)知識可確定出到△ABC的3個頂點距離的平方和最小的點為△ABC的( ?。?/h2>

    發(fā)布:2024/8/21 12:0:1組卷:18引用:2難度:0.7
  • 3.數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知△ABC的頂點A(2,0),B(0,4),若其歐拉線的方程為x-y+2=0,則頂點C的坐標為(  )

    發(fā)布:2024/9/22 15:0:8組卷:51引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正