試卷征集
加入會員
操作視頻

對于平面直角坐標系xOy中的線段AB及點P,給出如下定義:
若點P滿足PA=PB,則稱P為線段AB的“軸點”,其中,當0°<∠APB<60°時,稱P為線段AB的“遠軸點”;當60°≤∠APB≤180°時,稱P為線段AB的“近軸點”.
(1)如圖1,點A,B的坐標分別為(-2,0),(2,0),則在P1(-1,3),P2(0,2),P3(0,-1),P4(0,4)中,線段AB的“近軸點”是
P2,P3
P2,P3

(2)如圖2,點A的坐標為(3,0),點B在y軸正半軸上,∠OAB=30°.
①若P為線段AB的“遠軸點”,直接寫出點P的橫坐標t的取值范圍
t>3或t<0
t>3或t<0
;
②點C為y軸上的動點(不與點B重合且BC≠AB),若Q為線段AB的“軸點”,當線段QB與QC的和最小時,求點Q的坐標.
菁優(yōu)網(wǎng)

【考點】三角形綜合題
【答案】P2,P3;t>3或t<0
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/14 12:0:8組卷:764引用:13難度:0.2
相似題
  • 菁優(yōu)網(wǎng)1.如圖,在△AOB中,OA=OB,∠AOB=90°,BD平分∠ABO交AO于點D,AE⊥BD交BD的延長線于點E.則下列結論:①∠EAD=22.5°;②BD=2AE;③若AE=4,則S△ABD=16;④AB=OB+OD;⑤
    S
    ABD
    S
    OBD
    =
    AD
    OD
    =
    AB
    OB
    ,其中正確的結論有( ?。?/h2>

    發(fā)布:2024/11/1 18:30:7組卷:160引用:3難度:0.4
  • 菁優(yōu)網(wǎng)2.【教材呈現(xiàn)】數(shù)學課上,胡老師用無刻度的直尺和圓規(guī)按照華師版教材八年級上冊87頁完成角平分線的作法,方法如下:
    【試一試】
    如圖1,∠AOB為已知角,試按下列步驟用直尺和圓規(guī)準確地作出∠AOB的平分線.
    第一步:在射線OA、OB上,分別截取OD、OE,使OD=OE;
    第二步:分別以點D和點E為圓心、適當長(大于線段DE長的一半)為半徑作圓弧,在∠AOB內(nèi),兩弧交于點C;
    第三步:作射線OC.
    射線OC就是所要求作的∠AOB的平分線.
    【問題1】胡老師用尺規(guī)作角平分線時,用到的三角形全等的判定方法是

    【問題2】小萱同學發(fā)現(xiàn)只利用直角三角板也可以作∠AOB的角平分線,方法如下(如圖2):
    步驟:①利用三角板上的刻度,在OA、OB上分別截取OM、ON,使OM=ON.
    ②分別過點M、N作OM、ON的垂線,交于點P.
    ③作射線OP,則OP為∠AOB的平分線.
    (1)請寫出小萱同學作法的完整證明過程.
    (2)當∠MON=60°時,量得MN=4cm,則△MON的面積是
    cm2

    發(fā)布:2024/11/5 8:0:2組卷:232引用:4難度:0.5
  • 3.如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在x軸上,A、B、C三點的坐標分別為A(0,m),B(-12,0),C(n,0),且(n-10)2+|3m-15|=0,一動點P從點B出發(fā),以每秒2個單位長度的速度沿射線BO勻速運動,設點P運動時間為t秒.
    (1)求A、C兩點的坐標;
    (2)若點P恰好在∠BAO的角平分線上,求此時t的值;
    (3)當點P在線段BO上運動時,在y軸上是否存在點Q,使△POQ與△AOC全等?若存在,請求出t的值并求出此時點Q的坐標;若不存在,請說明理由.
    (4)連結PA,若△PAB為等腰三角形,請直接寫出點P的坐標.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/2 11:0:3組卷:330引用:2難度:0.2
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正