有n2(n≥4)個正數(shù),排成n×n矩陣(n行n列的數(shù)表):a11 a12 … a1n a21 a22 … a2n ? ? ? ? an1 an2 … ann
,aij表示位于第i行,第j列的數(shù).其中每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,并且所有的公比都相等,已知a24=1,a42=18,a43=316.
(1)求公比;
(2)用k表示a4k;
(3)求a11+a22+…+ann的值.
a 11 | a 12 | … | a 1 n |
a 21 | a 22 | … | a 2 n |
? | ? | ? | ? |
a n 1 | a n 2 | … | a nn |
a
42
=
1
8
a
43
=
3
16
【考點】錯位相減法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:17引用:3難度:0.5
相似題
-
1.已知數(shù)列{an}、{bn}滿足
,若數(shù)列{an}是等比數(shù)列且a1=3,b4=4+b3.a1a2a3?an=3bn
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令cn=,求{cn}的前n項和為Sn.2bn(n+1)an發(fā)布:2024/12/6 20:30:1組卷:179引用:3難度:0.6 -
2.已知數(shù)列{an}中,a1=1,且an+1=2an+2n(n∈N*).
(1)求證:數(shù)列{}是等差數(shù)列,并求出an;an2n
(2)數(shù)列{an}前n項和為Sn,求Sn.發(fā)布:2024/12/7 22:0:2組卷:443引用:3難度:0.7 -
3.已知等差數(shù)列{an}的前n項和為Sn,且S8=100,a2=5,設(shè)數(shù)列{bn}的前n項和為Pn=2n+1-2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項和為Tn.發(fā)布:2024/12/7 19:0:1組卷:57引用:2難度:0.6
把好題分享給你的好友吧~~