(2020?棗莊)歐拉(Euler,1707年~1783年)為世界著名的數(shù)學(xué)家、自然科學(xué)家,他在數(shù)學(xué)、物理、建筑、航海等領(lǐng)域都做出了杰出的貢獻(xiàn).他對(duì)多面體做過研究,發(fā)現(xiàn)多面體的頂點(diǎn)數(shù)V(Vertex)、棱數(shù)E(Edge)、面數(shù)F(Flatsurface)之間存在一定的數(shù)量關(guān)系,給出了著名的歐拉公式.
(1)觀察下列多面體,并把下表補(bǔ)充完整:
名稱 | 三棱錐 | 三棱柱 | 正方體 | 正八面體 |
圖形 | ||||
頂點(diǎn)數(shù)V | 4 |
6 6
|
8 8
|
6 6
|
棱數(shù)E | 6 |
9 9
|
12 12
|
12 12
|
面數(shù)F | 4 |
5 5
|
6 6
|
8 8
|
V+F-E=2
V+F-E=2
;【拓展提問】
(3)一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)小8,且有30條棱,則這多面體的頂點(diǎn)數(shù)是
20
20
;(4)某個(gè)玻璃飾品的外形是簡(jiǎn)單多面體,它的外表是由三角形和八邊形兩種多邊形拼接而成,且有48個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱.設(shè)該多面體表面三角形的個(gè)數(shù)為x個(gè),八邊形的個(gè)數(shù)為y個(gè),求x+y的值.
【答案】6;8;6;9;12;12;5;6;8;V+F-E=2;20
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:158引用:1難度:0.6
相似題
-
1.把黑色三角形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有3個(gè)黑色三角形,第②個(gè)圖案中有7個(gè)黑色三角形,第③個(gè)圖案中有11個(gè)黑色三角形,……,按此規(guī)律排列下去,則第⑧個(gè)圖案中黑色三角形的個(gè)數(shù)為( )
發(fā)布:2024/12/16 2:30:1組卷:87引用:3難度:0.6 -
2.用棋子擺出下列一組三角形,三角形每邊有n枚棋子,每個(gè)三角形的棋子總數(shù)是S.按此規(guī)律推斷,當(dāng)三角形邊上有n枚棋子時(shí),該三角形的棋子總數(shù)S等于( ?。?br />
發(fā)布:2024/12/16 5:30:2組卷:304引用:15難度:0.9 -
3.數(shù)學(xué)家華羅庚曾經(jīng)說過:“數(shù)形結(jié)合百般好,隔裂分家萬事休”.如圖,將一個(gè)邊長(zhǎng)為1的正方形紙板等分成兩個(gè)面積為
的長(zhǎng)方形,接著把面積為12的長(zhǎng)方形分成兩個(gè)面積為12的長(zhǎng)方形,如此繼續(xù)進(jìn)行下去,根據(jù)圖形的規(guī)律計(jì)算:14的值為( )12+(12)2+(12)3+…+(12)10發(fā)布:2024/12/11 0:30:1組卷:483引用:6難度:0.7
把好題分享給你的好友吧~~