某校為了普及環(huán)保知識,增強學(xué)生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽.經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設(shè)甲隊中每人答對的概率均為34,乙隊中3人答對的概率分別為45,34,23,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分.
(Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.
3
4
4
5
3
4
2
3
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:776引用:19難度:0.1
相似題
-
1.每年5月17日為國際電信日,某市電信公司每年在電信日當天對辦理應(yīng)用套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
2.某工廠有甲、乙、丙三條生產(chǎn)線同時生產(chǎn)同一產(chǎn)品,這三條生產(chǎn)線生產(chǎn)產(chǎn)品的次品率分別為6%,5%,4%,假設(shè)這三條生產(chǎn)線產(chǎn)品產(chǎn)量的比為5:7:8,現(xiàn)從這三條生產(chǎn)線上共任意選取100件產(chǎn)品,則次品數(shù)的數(shù)學(xué)期望為 .
發(fā)布:2024/12/15 19:0:2組卷:104引用:2難度:0.6 -
3.隨機變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:211引用:9難度:0.6
把好題分享給你的好友吧~~