2022-2023學年湖南省邵陽市新邵縣高一(上)期末數(shù)學試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項符合題目要求)
-
1.已知集合A={x|x-1>0},B={x|x2-2x≤0},則A∩B=( )
組卷:231引用:7難度:0.8 -
2.若命題p:?x0∈R,x02+2x0+2≤0,則¬p為( )
組卷:158引用:9難度:0.9 -
3.如果函數(shù)y=f(x)在[a,b]上的圖象是連續(xù)不斷的一條曲線,那么“f(a)?f(b)<0”是“函數(shù)y=f(x)在(a,b)內有零點“的( ?。?/h2>
組卷:417引用:8難度:0.7 -
4.半徑為1,圓心角為2弧度的扇形的面積是( )
組卷:330引用:2難度:0.8 -
5.已知函數(shù)f(x)=
,在下列區(qū)間中,包含f(x)的零點的區(qū)間是( ?。?/h2>6x-log2x組卷:1083引用:24難度:0.7 -
6.已知函數(shù)f(x)=4x-2x+1+4,x∈[-1,1],則函數(shù)y=f(x)的值域為( ?。?/h2>
組卷:1901引用:4難度:0.8 -
7.已知4m=3,3n=2,5p=2
,則m,n,p的大小關系為( ?。?/h2>2組卷:230引用:2難度:0.6
四、解答題(本大題共6小題,共70分,解答應寫出文字說明、證明過程或演算步驟)
-
21.為最大程度減少人員流動,減少疫情發(fā)生的可能性,一些城市陸續(xù)發(fā)出“春節(jié)期間非必要不返鄉(xiāng),就地過年”的倡議.某地政府積極制定政策,決定政企聯(lián)動,鼓勵企業(yè)在春節(jié)期間留住員工在本市過年并加班追產.為此,該地政府決定為當?shù)啬矨企業(yè)春節(jié)期間加班追產提供x萬元(x∈[10,20])的專項補貼.A企業(yè)在收到政府x萬元補貼后,產量將增加到t=(x+2)萬件.同時A企業(yè)生產t萬件產品需要投入成本為
)萬元,并以每件((7t+72t+2x)元的價格將其生產的產品全部售出.(注:收益=銷售金額+政府專項補貼-成本)6+40t
(1)求A企業(yè)春節(jié)期間加班追產所獲收益R(x)(萬元)關于政府補貼x(萬元)的函數(shù)關系式;
(2)當政府的專項補貼為多少萬元時,A企業(yè)春節(jié)期間加班追產所獲收益最大?組卷:26引用:1難度:0.6 -
22.已知函數(shù)
是定義在[-1,1]上的奇函數(shù),且f(x)=x+bax2+1.f(1)=12
(1)求a,b的值;
(2)判斷f(x)在[-1,1]上的單調性,并用定義證明;
(3)設g(x)=kx+5-2k,若對任意的x1∈[-1,1],總存在x2∈[0,1],使得f(x1)≤g(x2)成立.求實數(shù)k的取值范圍.組卷:77引用:2難度:0.5