已知函數(shù)f(x)=ax2+(a-2)x-xlnx.
(1)設(shè)a=0;
①求y=f(x)單調(diào)區(qū)間;
②試問f(x)有極大值還是極小值?并求出該極值.
(2)若f(x)在(0,e)上恰有兩個零點,求a的取值范圍.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/2 8:0:8組卷:125引用:1難度:0.3
相似題
-
1.已知函數(shù)
有兩個極值點x1,x2(x1≠x2),若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,則實數(shù)a的值可以是( ?。?/h2>f(x)=13x3+ax2+x發(fā)布:2024/12/19 2:30:1組卷:55引用:2難度:0.6 -
2.若函數(shù)f(x)=x2-ax+lnx有兩個極值點,則a的取值范圍為( )
發(fā)布:2024/12/19 6:0:1組卷:61引用:1難度:0.5 -
3.若函數(shù)f(x)=lnx-ax在區(qū)間(3,4)上有極值點,則實數(shù)a的取值范圍是( ?。?/h2>
發(fā)布:2024/12/19 14:0:2組卷:460引用:7難度:0.8
把好題分享給你的好友吧~~