已知函數(shù)f(x)=x3+3ax2+bx+a2在x=-1時有極值0.
(1)求函數(shù)f(x)的解析式;
(2)記g(x)=f(x)-2k+1,若函數(shù)g(x)有三個零點,求實數(shù)k的取值范圍.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:635引用:16難度:0.6
相似題
-
1.已知函數(shù)
有兩個極值點x1,x2(x1≠x2),若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,則實數(shù)a的值可以是( )f(x)=13x3+ax2+xA.0 B. 62C. 43D. 32發(fā)布:2024/12/19 2:30:1組卷:55引用:2難度:0.6 -
2.若函數(shù)f(x)=x2-ax+lnx有兩個極值點,則a的取值范圍為( ?。?/h2>
A. 0<a<22B. -22<a<22C. 或a<-22a>22D. a>22發(fā)布:2024/12/19 6:0:1組卷:61引用:1難度:0.5 -
3.若函數(shù)f(x)=lnx-ax在區(qū)間(3,4)上有極值點,則實數(shù)a的取值范圍是( ?。?/h2>
A. (0,13)B. (14,+∞)C. [14,13]D. (14,13)發(fā)布:2024/12/19 14:0:2組卷:460引用:7難度:0.8
把好題分享給你的好友吧~~