已知f(x)為R上的奇函數(shù),g(x)為R上的偶函數(shù),且f(x)+g(x)=2ex,其中e=2.71828….
(1)求函數(shù)f(x)和g(x)的解析式;
(2)若不等式f(x2+3)+f(1-ax)>0在(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)若?x1∈[0,1],?x2∈[m,+∞),使f(x2)=e-|x1-m|成立,求實(shí)數(shù)m的取值范圍.
f
(
x
2
)
=
e
-
|
x
1
-
m
|
【考點(diǎn)】函數(shù)恒成立問題;函數(shù)的奇偶性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:567引用:5難度:0.3
相似題
-
1.把符號
稱為二階行列式,規(guī)定它的運(yùn)算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實(shí)數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
2.對于任意x1,x2∈(2,+∞),當(dāng)x1<x2時,恒有
成立,則實(shí)數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:62引用:3難度:0.6 -
3.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:537引用:36難度:0.5