已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,雙曲線C的右頂點(diǎn)A在圓O:x2+y2=1上,且AF1?AF2=-3.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)動(dòng)直線l與雙曲線C恰有1個(gè)公共點(diǎn),且與雙曲線C的兩條漸近線分別交于點(diǎn)M,N,求△OMN(O為坐標(biāo)原點(diǎn))的面積.
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
A
F
1
?
A
F
2
=
-
3
【考點(diǎn)】雙曲線與平面向量.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/23 15:0:8組卷:131引用:1難度:0.4
相似題
-
1.雙曲線Γ:
的一條漸近線與圓:x2+y2=16交于第一象限的一點(diǎn)M,記雙曲線Γ的右焦點(diǎn)為F,左頂點(diǎn)為A,則x24-y212=1的值為( ?。?/h2>MA?MF發(fā)布:2024/12/18 4:30:1組卷:65引用:4難度:0.7 -
2.F1、F2是雙曲線
的左、右焦點(diǎn),點(diǎn)M為雙曲線E右支上一點(diǎn),點(diǎn)N在x軸上,滿足∠F1MN=∠F2MN=60°,若E:x2a2-y2b2=1(a,b>0),則雙曲線E的離心率為( ?。?/h2>3MF1+5MF2=λMN(λ∈R)發(fā)布:2024/12/20 13:30:1組卷:248引用:4難度:0.5 -
3.已知雙曲線
的左、右焦點(diǎn)分別是F1,F(xiàn)2,雙曲線C上有兩點(diǎn)A,B滿足C:x2a2-y2b2=1(a>0,b>0),且OA+OB=0,若四邊形F1AF2B的周長(zhǎng)l與面積S滿足∠F1AF2=2π3,則雙曲線C的離心率為( ?。?/h2>3l2=80S發(fā)布:2024/12/10 1:0:1組卷:173引用:5難度:0.5
把好題分享給你的好友吧~~