2020-2021學年甘肅省天水一中高二(下)開學數(shù)學試卷(理科)
發(fā)布:2024/11/10 21:0:1
一、選擇題(每小題4分,共40分)
-
1.設a,b,c∈R,且a>b,則( ?。?/h2>
組卷:317引用:138難度:0.9 -
2.使不等式2x2-5x-3≥0成立的一個充分而不必要條件是( ?。?/h2>
組卷:118引用:12難度:0.7 -
3.已知橢圓C:
+x2a2=1的一個焦點為(2,0),則C的離心率為( ?。?/h2>y24組卷:8654引用:38難度:0.9 -
4.設
,則曲線y=f(x)在點(2,f(2))處的切線的傾斜角是( ?。?/h2>lim△x→0f(2+△x)-f(2)△x=-1組卷:52引用:3難度:0.7 -
5.已知等差數(shù)列{an}的前n項和為Sn,若S4=a7+1,a4+a7=4,則a10=( ?。?/h2>
組卷:251引用:6難度:0.8 -
6.已知拋物線的頂點在原點,對稱軸為x軸,焦點在雙曲線
上,則拋物線方程為( )x24-y22=1組卷:25引用:3難度:0.9
三、解答題
-
17.(理普)函數(shù)f(x)=a(x2-1)-lnx(a∈R).
(1)若y=f(x)在x=2處取得極小值,求實數(shù)a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求實數(shù)a的取值范圍.組卷:47引用:8難度:0.5 -
18.已知A,B分別為橢圓E:
+y2=1(a>1)的左、右頂點,G為E的上頂點,x2a2?AG=8.P為直線x=6上的動點,PA與E的另一交點為C,PB與E的另一交點為D.GB
(1)求E的方程;
(2)證明:直線CD過定點.組卷:12635引用:16難度:0.5