《第18章 勾股定理》2012年暑假數(shù)學(xué)作業(yè)(三)
發(fā)布:2024/12/21 6:30:2
一、填空題
-
1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,則AB=
組卷:38引用:1難度:0.9 -
2.在△ABC中,若AB=AC=20,BC=24,則BC邊上的高AD=,AC邊上的高BE=.
組卷:37引用:1難度:0.9 -
3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,則AC=,AB邊上的高CD=.
組卷:21引用:1難度:0.7 -
4.在△ABC中,若AB=BC=CA=a,則△ABC的面積為.
組卷:25引用:1難度:0.7
三、解答題
-
11.已知:如圖,△ABC中,∠C=90°,D為AB的中點(diǎn),E、F分別在AC、BC上,且DE⊥DF.求證:AE2+BF2=EF2.
組卷:1989引用:5難度:0.5 -
12.如圖,如果以正方形ABCD的對(duì)角線AC為邊作第二個(gè)正方形ACEF,再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去,…已知正方形ABCD的面積S1為1,按上述方法所作的正方形的面積依次為S2,S3,…,Sn(n為正整數(shù)),那么第8個(gè)正方形的面積S8=,第n個(gè)正方形的面積Sn=.
組卷:71引用:1難度:0.5