2023-2024學年黑龍江省大慶鐵人中學高一(上)月考數(shù)學試卷(10月份)
發(fā)布:2024/9/2 0:0:8
一、單選題(共8小題,每小題5分,共60分。)
-
1.已知全集U=R,集合A={x|x≥2或x≤-3},B={x|0≤x≤4},則(?UA)∩B=( ?。?/h2>
組卷:161引用:5難度:0.9 -
2.函數(shù)f(x)=x|x-2|的單增區(qū)間為( ?。?/h2>
組卷:698引用:2難度:0.8 -
3.設(shè)x∈R,則“x2+4x-12<0”是“
”的( ?。l件.3xx+6<1組卷:64引用:4難度:0.7 -
4.若函數(shù)f(2x-1)的定義域為[-1,1],則函數(shù)
的定義域為( ?。?/h2>y=f(x-1)x-1組卷:1028引用:12難度:0.8 -
5.已知
,則下列不等式正確的是( ?。?/h2>1a<1b<0組卷:26引用:2難度:0.7 -
6.關(guān)于x的不等式x2-(a+1)x+a<0的解集中恰有1個整數(shù),則實數(shù)a的取值范圍是( ?。?/h2>
組卷:815引用:19難度:0.6 -
7.已知正數(shù)a,b滿足
+1a=1,若不等式a+b≥-x2+4x+18-m對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是( )9b組卷:350引用:22難度:0.7
三、解答題(共6小題,共70分。)
-
21.為了加強“平安校園”建設(shè),有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務室,由于此警務室的后背靠墻,無需建造費用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元,設(shè)屋子的左右兩面墻的長度均為x米(1≤x≤5).
(1)當左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價;
(2)現(xiàn)有乙工程隊也要參與此警務室的建造競標,其給出的整體報價為元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a的取值范圍.1800a(1+x)x組卷:286引用:15難度:0.6 -
22.設(shè)函數(shù)h(x)=x2,g(x)=ax-b(a,b∈R),令函數(shù)f(x)=h(x)-g(x).
(1)若f(-x)=f(x)對任意x恒成立,求實數(shù)a的值;
(2)試判斷:是否存在實數(shù)a,b,使得當x∈[0,b]時,2≤f(x)≤6恒成立,若存在,請求出實數(shù)b的取值范圍;若不存在,請說明理由.組卷:47引用:3難度:0.4