2023-2024學(xué)年山東省臨沂市部分區(qū)縣高二(上)月考數(shù)學(xué)試卷(11月份)
發(fā)布:2024/10/23 3:0:1
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.直線3x+2y-1=0的一個(gè)方向向量是( ?。?/h2>
組卷:1857引用:39難度:0.9 -
2.已知雙曲線C:
的離心率為2,則其漸近線的傾斜角為( ?。?/h2>y2a2-x2b2=1(a>0,b>0)組卷:144引用:3難度:0.7 -
3.已知矩形ABCD中,AB=2,
,將矩形ABCD沿對(duì)角線AC折起,使平面ABC與平面ACD垂直,則BC=23=( ?。?/h2>|BD|組卷:47引用:2難度:0.5 -
4.若兩條不同的直線l1:(2a-4)x-2y-2=0與直線l2:3x+(a+2)y+1=0平行,則a的值為( ?。?/h2>
組卷:119引用:8難度:0.8 -
5.過(guò)圓C:x2+y2=1外一點(diǎn)P(a-2,a)作圓C的切線,切點(diǎn)分別為A,B,則直線AB過(guò)定點(diǎn)( ?。?/h2>
組卷:47引用:1難度:0.6 -
6.已知過(guò)坐標(biāo)原點(diǎn)的直線l的方向向量
,則點(diǎn)P(1,2,3)到直線l的距離是( ?。?/h2>u=(1,1,1)組卷:297引用:5難度:0.6 -
7.已知橢圓
,F(xiàn)為其左焦點(diǎn),直線y=kx(k>0)與橢圓C交于點(diǎn)A、B,且AF⊥FB.若∠ABF=30°,則橢圓C的離心率為( )C:x2a2+y2b2=1(a>b>0)組卷:95引用:2難度:0.5
四、解答題:
-
21.從P(4,1)點(diǎn)發(fā)出的光線,經(jīng)x軸鏡面反射后與圓C1:(x+2)2+(y-1)2=8相切,
(1)求反射光線所在直線的一般式方程;
(2)若圓C與圓C1外切,并且與直線x+y-1=0相切于點(diǎn)A(2,-1).求圓C的標(biāo)準(zhǔn)方程.組卷:17引用:3難度:0.5 -
22.已知橢圓E的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0)(c>0),點(diǎn)M在橢圓E上,MF2⊥F1F2,△MF1F2的周長(zhǎng)為
,面積為4+23.12c
(1)求橢圓E的方程.
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過(guò)點(diǎn)(1,0)的直線l與橢圓E交于C,D兩點(diǎn)(不同于左右頂點(diǎn)),記直線AC的斜率為k1,直線BD的斜率為k2,問(wèn)是否存在實(shí)常數(shù)λ,使得k1=λk2恒成立?若成立,求出λ的值,若不成立,說(shuō)明理由.組卷:52引用:1難度:0.4