2023-2024學(xué)年江蘇省蘇州市高新實(shí)驗(yàn)中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/14 5:0:2
一.仔細(xì)選一選(本題有10個(gè)小題,每小題3分,共30分)
-
1.下列事件中,屬于必然事件的是( )
組卷:101引用:3難度:0.6 -
2.已知點(diǎn)P到圓心O的距離為5,若點(diǎn)P在圓內(nèi),則⊙O的半徑可能為( ?。?/h2>
組卷:1472引用:26難度:0.5 -
3.已知2a=3b,則下列比例式錯(cuò)誤的是( )
組卷:151引用:5難度:0.7 -
4.把二次函數(shù)y=-x2的圖象向左平移1個(gè)單位,然后向上平移3個(gè)單位,則平移后的圖象對(duì)應(yīng)的二次函數(shù)的關(guān)系式為( ?。?/h2>
組卷:469引用:9難度:0.7 -
5.如圖,在四邊形ABCD中,已知∠ADC=∠BAC,那么補(bǔ)充下列條件后不能判定△ADC和△BAC相似的是( ?。?/h2>
組卷:3040引用:31難度:0.6 -
6.如圖,DE∥BC,BD:CE=4:3,AD=12,則AE的長(zhǎng)為( ?。?br />?
組卷:268引用:5難度:0.7 -
7.如圖,OA是⊙O的半徑,以O(shè)A為直徑的⊙C與⊙O的弦AB相交于點(diǎn)D,則AD與BD的大小關(guān)系( ?。?/h2>
組卷:271引用:6難度:0.7 -
8.小凱在畫(huà)一個(gè)開(kāi)口向下的二次函數(shù)圖象時(shí),列出如下表格:
x … -1 0 1 2 … y … 3 2 3 3 … 組卷:467引用:2難度:0.5
三.全面答一答(本題有8個(gè)小題,共66分)
-
23.根據(jù)以下素材,探索完成任務(wù).
如何設(shè)計(jì)警戒線(xiàn)之間的寬度? 素材1
圖1為某公園的拋物線(xiàn)型拱橋,圖2是其橫截面示意圖,測(cè)得水面寬度AB=24米,拱頂離水面的距離為CD=4米.素材2 擬在公園里投放游船供游客乘坐,載重最少時(shí),游船的橫截面如圖3所示,漏出水面的船身為矩形,船頂為等腰三角形.如圖3,測(cè)得相關(guān)數(shù)據(jù)如下:EF=EK=1.7米,F(xiàn)K=3米,GH=IJ=1.26米,F(xiàn)G=JK=0.4米. 素材3 為確保安全,擬在石拱橋下面的P,Q兩處設(shè)置航行警戒線(xiàn),要求如下:
①游船底部HI在P,Q之間通行;
②當(dāng)載重最少通過(guò)時(shí),游船頂部E與拱橋的豎直距離至少為0.5米.問(wèn)題解決 任務(wù)1 確定拱橋形狀 在圖2中建立合適的直角坐標(biāo)系,并求這條拋物線(xiàn)的函數(shù)表達(dá)式. 任務(wù)2 設(shè)計(jì)警戒線(xiàn)之間的寬度 求PQ的最大值. 組卷:829引用:8難度:0.5 -
24.如圖,點(diǎn)P是等邊三角形ABC中AC邊上的動(dòng)點(diǎn)(0°<∠ABP<30°),作△BCP的外接圓交AB于點(diǎn)D.點(diǎn)E是圓上一點(diǎn),且
,連接DE交BP于點(diǎn)F.?PD=?PE
(1)求證:BE=BC;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)變化時(shí),∠BFD的度數(shù)是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,求∠BFD的度數(shù).
(3)探究線(xiàn)段BF、CE、EF之間的數(shù)量關(guān)系,并證明.組卷:411引用:5難度:0.3