試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022年寧夏銀川市金鳳區(qū)良田回中中考數(shù)學二模試卷

發(fā)布:2024/10/25 15:30:2

一、選擇題

  • 菁優(yōu)網(wǎng)1.如圖是由四個相同的小正方體組成的立體圖形,它的俯視圖為(  )

    組卷:227引用:12難度:0.9
  • 2.目前,世界集成電路生產(chǎn)技術(shù)水平最高已達到7nm(1nm=10-9m),主流生產(chǎn)線的技術(shù)水平為14~28nm,中國大陸集成電路生產(chǎn)技術(shù)水平最高為28nm.將28m用科學記數(shù)法可表示為(  )m.

    組卷:11引用:1難度:0.9
  • 3.下面等式:①
    3
    2
    ×
    4
    2
    =
    12
    2
    ,②
    4
    3
    -
    27
    =
    1
    ,③(x-y)2=x2-y2,④(m43=m12,⑤(2x-y)(2x+y)=2x2-y2,⑥
    18
    ÷
    2
    =
    3
    ,其中正確的個數(shù)是( ?。?/h2>

    組卷:192引用:4難度:0.8
  • 4.為了保護環(huán)境,加強環(huán)保教育,某中學組織學生參加義務(wù)手機廢舊電池的活動,隨機抽取班上30名學生進行調(diào)查,并將調(diào)查結(jié)果繪制成統(tǒng)計表,請根據(jù)學生收集到的廢舊電池數(shù),判斷下列說法正確的是(  )
    收集的廢電池數(shù)(節(jié)) 4 5 6 7 8
    人數(shù)(人) 6 9 11 3 1

    組卷:37引用:4難度:0.6
  • 菁優(yōu)網(wǎng)5.如圖,∠AOB=30°,以點O為圓心,任意長為半徑作弧分別交OB,OA于點C,D,分別以點C,D為圓心,大于
    1
    2
    CD
    的長為半徑作弧,兩弧交于點E,過E點作EF∥OB,EG⊥OB于點G,若OF=2,則EG的長為( ?。?/h2>

    組卷:119引用:5難度:0.5
  • 6.已知拋物線y=x2+2x+k與x軸沒有交點,則一次函數(shù)y=kx-k的大致圖形是( ?。?/h2>

    組卷:668引用:8難度:0.5
  • 菁優(yōu)網(wǎng)7.如圖,⊙O內(nèi)有一個正方形,且正方形的各頂點在圓上,⊙O的半徑為2,以點A為圓心,以AC長為半徑畫弧交AB的延長線于點E,交AD的延長線于點F,則圖中陰影部分的面積為( ?。?/h2>

    組卷:24引用:1難度:0.6
  • 菁優(yōu)網(wǎng)8.如圖,在平面直角坐標系中,點P在第一象限,⊙P與x軸、y軸都相切,且經(jīng)過矩形AOBC的頂點C,與BC相交于點D.若⊙P的半徑為5,點A的坐標是(0,8).則點D的坐標是(  )

    組卷:6856引用:45難度:0.6

二、解答題

  • 25.材料一:如圖①,點C把線段AB分成兩部分(AC>BC),若
    AC
    AB
    =
    BC
    AC
    ,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點.類似地,對于實數(shù):a1<a2<a3,如果滿足(a2-a12=(a3-a2)(a3-a1),則稱a2為a1,a3的黃金數(shù).
    材料二:如果一條直線l把一個面積為S的圖形分成面積為S1和S2兩部分(S1>S2),且滿足
    S
    1
    S
    =
    S
    2
    S
    1
    ,那么稱直線l為該圖形的黃金分割線.如圖②,在△ABC中,若線段CD所在的直線是△ABC的黃金分割線,過點C作一條直線交BD邊于點E,過點D作DF∥EC交△ABC的一邊于點F,連接EF,交CD于G.
    問題:
    (1)若實數(shù)0<a<1,a為0,1的黃金數(shù),求a的值.
    (2)S△CFG
    S△EDG.(填”>””<””=”)
    (3)EF是△ABC的黃金分割線嗎?為什么?
    菁優(yōu)網(wǎng)

    組卷:38引用:3難度:0.2
  • 菁優(yōu)網(wǎng)26.如圖,△OAB的頂點坐標分別為O(0,0)A(3,4)B(6,0),動點P、Q同時從點O出發(fā),分別沿x軸正方向和y軸正方向運動,速度分別為每秒3個單位和每秒2個單位,點P到達點B時點P、Q同時停止運動.過點Q作MN∥OB分別交AO,AB于點M、N,連接PM,PN.設(shè)運動時間為t(秒).
    (1)求點M的坐標(用含t的式子表示);
    (2)求四邊形MNBP面積的最大值;
    (3)連接AP,當∠OAP=∠BPN時,求點N到OA的距離.

    組卷:45引用:2難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正