試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2023-2024學(xué)年北京市順義區(qū)楊鎮(zhèn)一中高二(上)期中數(shù)學(xué)試卷

發(fā)布:2024/10/8 11:0:2

一、選擇題,10小題,每題4分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng).

  • 1.直線
    3
    x-y-1=0的傾斜角是(  )

    組卷:254引用:10難度:0.9
  • 2.在平面直角坐標(biāo)系xOy中,角α以ox為始邊,它的終邊經(jīng)過點(diǎn)(4,3),則cosα=( ?。?/h2>

    組卷:179引用:1難度:0.8
  • 菁優(yōu)網(wǎng)3.如圖所示,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,AD的中點(diǎn),則異面直線B1C與EF所成的角的大小為( ?。?/h2>

    組卷:1365引用:11難度:0.9
  • 4.已知平面α的法向量為(2,-4,-2),平面β的法向量為(-1,2,k),若α∥β,則k=(  )

    組卷:899引用:8難度:0.9
  • 5.如果AB>0,BC>0,那么直線Ax+By+C=0不經(jīng)過的象限是(  )

    組卷:302引用:3難度:0.9
  • 6.已知圓C的方程為x2+y2-2x+4y-4=0和圓P的方程為x2+(y-1)2=4,兩圓的位置關(guān)系為( ?。?/h2>

    組卷:78引用:2難度:0.8
  • 7.直線x+(m+2)y-1=0與直線mx+3y-1=0平行,則m的值為( ?。?/h2>

    組卷:67引用:8難度:0.8

三、解答題,6小題,共85分,解答題應(yīng)寫出文字說明,演算步驟或證明過程.

  • 20.在梯形ABCD中,AB∥CD,∠BAD=60°,AB=2AD=2CD=4,P為AB的中點(diǎn),線段AC與DP交于O點(diǎn),將△ACD沿AC折起到△ACD′的位置,使得平面ACB⊥平面ACD′.
    菁優(yōu)網(wǎng)
    (1)求證:BC∥平面POD′;
    (2)線段PD′上是否存在點(diǎn)Q,使得CQ與平面BCD′所成角的正弦值為
    6
    8
    ?若存在,求出
    PQ
    PD
    的值;若不存在,請說明理由.

    組卷:41引用:1難度:0.5
  • 21.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn)如下結(jié)論:“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值m(m≠1)的點(diǎn)的軌跡是圓”.在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,1),B(1,1),點(diǎn)P滿足
    PA
    PB
    =
    2
    ,設(shè)點(diǎn)P的軌跡為圓M,點(diǎn)M為圓心,
    (1)求圓M的方程;
    (2)若點(diǎn)Q是直線l1:x+y+5=0上的一個(gè)動點(diǎn),過點(diǎn)Q作圓M的兩條切線,切點(diǎn)分別為E,F(xiàn),求四邊形QEMF的面積的最小值;
    (3)若直線l2:ax+by-1=0(a>0,b>0)始終平分圓M的面積,寫出
    a
    b
    +
    1
    +
    b
    a
    +
    1
    ab
    的最小值.

    組卷:41引用:1難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正