試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年江蘇省無錫市江陰市南菁高級中學高二(上)調(diào)研數(shù)學試卷(9月份)

發(fā)布:2024/9/1 18:0:8

一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.數(shù)列
    2
    3
    ,
    4
    5
    6
    9
    ,
    8
    17
    10
    33
    ,?的一個通項公式為(  )

    組卷:270引用:3難度:0.8
  • 2.若數(shù)列{an}滿足an+1=
    4
    a
    n
    +
    3
    4
    n
    N
    *
    ,且a1=1,則a17=(  )

    組卷:90引用:1難度:0.8
  • 3.已知數(shù)列{an}滿足a1=1,an=an-1+3n-2(n≥2),則{an}的通項公式為( ?。?/h2>

    組卷:141引用:7難度:0.9
  • 4.已知數(shù)列{an}的首項為2,且數(shù)列{an}滿足an+1=
    a
    n
    -
    1
    a
    n
    +
    1
    ,數(shù)列{an}的前n項的和為Sn,則S1008等于( ?。?/h2>

    組卷:57引用:5難度:0.6
  • 5.若數(shù)列{an}的前n項和為
    S
    n
    =
    n
    2
    -
    4
    n
    +
    2
    ,則|a1|+|a2|+…+|a10|等于(  )

    組卷:179引用:2難度:0.5
  • 6.已知等比數(shù)列{an}的各項均為正數(shù),公比q≠1,
    k
    a
    1
    a
    2
    ?
    a
    k
    =a11,則k=(  )

    組卷:77引用:3難度:0.7
  • 7.等比數(shù)列{an}的前n項和為Sn,S5=2,S10=6,則a16+a17+a18+a19+a20等于( ?。?/h2>

    組卷:215引用:1難度:0.7

四、解答題:本大題共6個大題,共70分.解答應寫出文字說明、證明過程或演算步驟.

  • 21.設公差不為0的等差數(shù)列{an}的首項為1,且a2,a5,a14構(gòu)成等比數(shù)列.
    (1)求數(shù)列{an}的通項公式,并求數(shù)列
    {
    a
    n
    +
    1
    2
    n
    }
    的前n項和為Tn
    (2)令cn=an+1an+2cos(n+1)π,若c1+c2+…+cn≥tn2對n∈N*恒成立,求實數(shù)t的取值范圍.

    組卷:277引用:7難度:0.4
  • 22.如果數(shù)列{an}對任意的n∈N*,an+2-an+1>an+1-an,則稱{an}為“速增數(shù)列”.
    (1)判斷數(shù)列{2n}是否為“速增數(shù)列”?說明理由;
    (2)若數(shù)列{an}為“速增數(shù)列”.且任意項an∈Z,a1=1,a2=3,ak=2023,求正整數(shù)k的最大值;
    (3)已知項數(shù)為2k(k≥2,k∈Z)的數(shù)列{bn}是“速增數(shù)列”,且{bn}的所有項的和等于k,若
    c
    n
    =
    2
    b
    n
    ,n=1,2,3,…,2k,證明:ckck+1<2.

    組卷:308引用:8難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正