冀教版九年級(下)中考題同步試卷:34.4 二次函數(shù)的應(yīng)用(18)
發(fā)布:2024/11/3 3:30:2
一、解答題(共30小題)
-
1.如圖,已知一次函數(shù)y=0.5x+2的圖象與x軸交于點(diǎn)A,與二次函數(shù)y=ax2+bx+c的圖象交于y軸上的一點(diǎn)B,二次函數(shù)y=ax2+bx+c的圖象與x軸只有唯一的交點(diǎn)C,且OC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)設(shè)一次函數(shù)y=0.5x+2的圖象與二次函數(shù)y=ax2+bx+c的圖象的另一交點(diǎn)為D,已知P為x軸上的一個動點(diǎn),且△PBD為直角三角形,求點(diǎn)P的坐標(biāo).組卷:1125引用:60難度:0.5 -
2.如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線對稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時,點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.組卷:2010引用:71難度:0.5 -
3.如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過A、B兩點(diǎn)的拋物線為y=-x2+bx+c.點(diǎn)D為線段AB上一動點(diǎn),過點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.
(1)求拋物線的解析式.
(2)當(dāng)DE=4時,求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說明理由.組卷:2173引用:66難度:0.5 -
4.如圖,拋物線y=-x2+bx+c與直線y=
x+2交于C、D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為(3,12).點(diǎn)P是y軸右側(cè)的拋物線上一動點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.72
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時,以O(shè)、C、P、F為頂點(diǎn)的四邊形是平行四邊形?請說明理由.
(3)若存在點(diǎn)P,使∠PCF=45°,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo).組卷:4872引用:71難度:0.5 -
5.如圖,拋物線y=
x2+bx+c與y軸交于點(diǎn)C(0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(2,0).12
(1)求該拋物線的解析式.
(2)若點(diǎn)P是AB上的一動點(diǎn),過點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值.
(3)若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).組卷:2229引用:67難度:0.5 -
6.如圖,已知拋物線y=ax2+bx+c與x軸的一個交點(diǎn)A的坐標(biāo)為(-1,0),對稱軸為直線x=-2.
(1)求拋物線與x軸的另一個交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對稱軸上一動點(diǎn),且以1個單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時間為t秒.
①當(dāng)t為
②點(diǎn)P在運(yùn)動過程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.組卷:726引用:59難度:0.5 -
7.如圖,拋物線y=-(x-1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(-1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.組卷:2184引用:65難度:0.5 -
8.如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動點(diǎn),點(diǎn)F是線段OD上的動點(diǎn),問:在P點(diǎn)和F點(diǎn)移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.組卷:1007引用:60難度:0.5 -
9.如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是直線x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.組卷:1073引用:59難度:0.5 -
10.如圖,在平面直角坐標(biāo)系xOy中,頂點(diǎn)為M的拋物線y=ax2+bx(a>0),經(jīng)過點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=OB=2,∠AOB=120°.
(1)求這條拋物線的表達(dá)式;
(2)連接OM,求∠AOM的大?。?br />(3)如果點(diǎn)C在x軸上,且△ABC與△AOM相似,求點(diǎn)C的坐標(biāo).組卷:2522引用:63難度:0.5
一、解答題(共30小題)
-
29.如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(-2,0)和點(diǎn)C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動點(diǎn),當(dāng)△KCM的周長最小時,點(diǎn)K的坐標(biāo)為
(3)連接AC,有兩動點(diǎn)P、Q同時從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動,點(diǎn)Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動,當(dāng)P、Q兩點(diǎn)相遇時,它們都停止運(yùn)動,設(shè)P、Q同時從點(diǎn)O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點(diǎn)在運(yùn)動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.組卷:743引用:55難度:0.5 -
30.如圖,已知拋物線y=-
x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(-2,0).14
(1)求拋物線的解析式及它的對稱軸方程;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由;
(4)在拋物線的對稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.組卷:711引用:57難度:0.5