2022-2023學(xué)年湖北省孝感市安陸市八年級(上)期末數(shù)學(xué)試卷
發(fā)布:2024/7/24 8:0:9
一、精心選擇(本大題共8道小題,每小題3分,共24分,在每小題給出的四個選項(xiàng)中只有一個答案是符合題目要求的,請在答題卡中把正確答案的代號涂黑)
-
1.若分式
的值為0,則實(shí)數(shù)x的值為( )x+2x-1組卷:415引用:6難度:0.9 -
2.圖中的圖形為軸對稱圖形,該圖形的對稱軸的條數(shù)為( ?。?/h2>
組卷:1221引用:13難度:0.9 -
3.下列運(yùn)算正確的是( ?。?/h2>
組卷:217引用:2難度:0.9 -
4.如果(x+m)與(x+3)的乘積中不含x的一次項(xiàng),則m的值為( )
組卷:20489引用:205難度:0.7 -
5.如圖,將△ABC折疊,使AC邊落在AB邊上,展開后得到折痕l,則l是△ABC的( ?。?/h2>
組卷:148引用:2難度:0.7 -
6.若x2-2(m-3)x+16是完全平方式,則m的值是( ?。?/h2>
組卷:865引用:5難度:0.7 -
7.如圖,將三角形紙片剪掉一角得四邊形,設(shè)△ABC與四邊形BCDE的外角和的度數(shù)分別為α,β,則正確的是( ?。?/h2>
組卷:2299引用:29難度:0.6 -
8.如圖,△ABC中,BP平分∠ABC,AP⊥BP于點(diǎn)P,連接CP,△PBC的面積為3,△ABC的面積為( ?。?/h2>
組卷:340引用:3難度:0.6
三、用心做一做,顯顯自己的能力?。ū敬箢}共8小題,滿分0分.)
-
23.《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽著作,是數(shù)學(xué)發(fā)展史的一個里程碑.在該書的第2卷“幾何與代數(shù)”部分,記載了很多利用幾何圖形來論證的代數(shù)結(jié)論,利用幾何給人以強(qiáng)烈印象將抽象的邏輯規(guī)律體現(xiàn)在具體的圖形之中.
(1)我們在學(xué)習(xí)許多代數(shù)公式時,可以用幾何圖形來推理,觀察下列圖形,找出可以推出的代數(shù)公式,(下面各圖形均滿足推導(dǎo)各公式的條件,只需填寫對應(yīng)公式的序號)
公式①:(a+b+c)d=ad+bd+cd
公式②:(a+b)(c+d)=ac+ad+bc+bd
公式③:(a-b)2=a2-2ab+b2
公式④:(a+b)2=a2+2ab+b2
圖1對應(yīng)公式 ,圖2對應(yīng)公式 ,圖3對應(yīng)公式 ,圖4對應(yīng)公式 .
(2)《幾何原本》中記載了一種利用幾何圖形證明平方差公式(a+b)(a-b)=a2-b2的方法,如圖5,請寫出證明過程;(已知圖中各四邊形均為矩形)
(3)如圖6,在等腰直角三角形ABC中,∠BAC=90°,D為BC的中點(diǎn),E為邊AC上任意一點(diǎn)(不與端點(diǎn)重合),過點(diǎn)E作EG⊥BC于點(diǎn)G,作EH⊥AD于點(diǎn)H,過點(diǎn)B作BF∥AC交EG的延長線于點(diǎn)F.記△BFG與△CEG的面積之和為S1,△ABD與△AEH的面積之和為S2.
①若E為邊AC的中點(diǎn),則的值為 ;S1S2
②若E不為邊AC的中點(diǎn)時,試問①中的結(jié)論是否仍成立?若成立,寫出證明過程;若不成立,請說明理由.組卷:866引用:4難度:0.1 -
24.已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.組卷:10434引用:86難度:0.3