近年來,購買盲盒成為當下年輕人的潮流之一,為了引導青少年正確消費,國家市場監(jiān)管總局提出,盲盒經營行為應規(guī)范指引,經營者不能變相誘導消費.盲盒最吸引人的地方,是因為盒子上沒有標注,只有打開才會知道自己買到了什么,這種不確定性的背后就是概率.幾何分布是概率論中非常重要的一個概率模型,可描述如下:在獨立的伯努利(Bernoulli)試驗中,若所考慮事件首次出現,則試驗停止,此時所進行的試驗次數X服從幾何分布,事件發(fā)生的概率p即為幾何分布的參數,記作X~G(p).幾何分布有如下性質:分布列為P(X=k)=(1-p)k-1p,k=1,2,…,n,…,期望E(X)=+∞∑k=1k(1-p)k-1?p=1p.現有甲文具店推出四種款式不同、單價相同的文具盲盒,數量足夠多,購買規(guī)則及概率規(guī)定如下:每次購買一個,且買到任意一種款式的文具盲盒是等可能的.
(1)現小嘉欲到甲文具店購買文具盲盒.
①求他第二次購買的文具盲盒的款式與第一次購買的不同的概率;
②設他首次買到兩種不同款式的文具盲盒時所需要的購買次數為Y,求Y的期望;
(2)若甲文具店的文具盲盒的單價為12元,乙文具店出售與甲文具店款式相同的非盲盒文具且單價為18元.小興為了買齊這四種款式的文具,他應選擇去哪家文具店購買更省錢,并說明理由.
E
(
X
)
=
+
∞
∑
k
=
1
k
(
1
-
p
)
k
-
1
?
p
=
1
p
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/30 10:0:2組卷:124難度:0.5
相似題
-
1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區(qū)間(130,150]中參加全市座談交流的人數,求X的分布列及數學期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126難度:0.5 -
2.設離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數,則E(X)為( )
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7