設函數(shù)f(x),g(x)具有如下性質:
①定義域均為R;
②f(x)為奇函數(shù),g(x)為偶函數(shù);
③f(x)+g(x)=ex(常數(shù)e是自然對數(shù)的底數(shù),e=2.71828…).
利用上述性質,解決以下問題:
(1)求函數(shù)f(x),g(x)的解析式;
(2)證明:對任意實數(shù)x,[f(x)]2-[g(x)]2為定值,并求出這個定值;
(3)已知m∈R,記函數(shù)y=2m?g(2x)-4f(x),x∈[-1,0]的最小值為φ(m),求φ(m).
【考點】函數(shù)的最值;函數(shù)的奇偶性.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/13 15:0:1組卷:38引用:1難度:0.4
相似題
-
1.設f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0,]上的最大值.32發(fā)布:2024/12/10 12:0:1組卷:635引用:40難度:0.5 -
2.已知a>0,且a≠1,若函數(shù)
有最大值,則關于x的不等式f(x)=aln(x2-2x+3)的解集為.loga(x2-5x+7)>0發(fā)布:2024/12/2 9:0:2組卷:165引用:4難度:0.5 -
3.設函數(shù)y=lnx的反函數(shù)為y=g(x),函數(shù)f(x)=
?g(x)-x2ex3-x2(x∈R)13
(Ⅰ)求函數(shù)y=f(x)的單調區(qū)間
(Ⅱ)求y=f(x)在[-1,2ln3]上的最小值.發(fā)布:2024/12/6 8:0:2組卷:88引用:1難度:0.3
把好題分享給你的好友吧~~