試卷征集
加入會員
操作視頻

已知橢圓C:
x
2
4
+
y
2
3
=
1
的右焦點為F,過點F的直線(不與x軸垂直)與橢圓C相交于A,B兩點,直線l:x=4與x軸相交于點H,過點A作AD⊥l,垂足為D.
(1)求四邊形OAHB(O為坐標原點)面積的取值范圍;
(2)證明:直線BD過定點E,并求點E的坐標.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:98引用:2難度:0.5
相似題
  • 1.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)過點M(
    2
    2
    ,
    3
    2
    ),且離心率為e=
    2
    2

    (1)求橢圓的標準方程;
    (2)當橢圓C和圓O:x2+y2=1.過點A(m,0)(m>1)作直線l1和l2,且兩直線的斜率之積等于1,l1與圓O相切于點P,l2與橢圓相交于不同的兩點M,N.①求m的取值范圍;②求△OMN面積的最大值.

    發(fā)布:2024/11/12 11:30:1組卷:54引用:5難度:0.4
  • 2.已知離心率為
    1
    2
    的橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)與直線x+2y-4=0有且只有一個公共點.
    (1)求橢圓C的標準方程;
    (2)設過點P(0,-2)的動直線l與橢圓C相交于A,B兩點,當坐標原點O位于以AB為直徑的圓外時,求直線l斜率的取值范圍.

    發(fā)布:2024/10/23 3:0:1組卷:107引用:2難度:0.4
  • 菁優(yōu)網3.如圖,已知橢圓G:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左、右兩個焦點分別為F1、F2,設A(0,b),P(-a,0),Q(a,0),若△AF1F2為正三角形且周長為6.
    (1)求橢圓G的標準方程;
    (2)若過點(1,0)且斜率為k(k≠0,k∈R)的直線與橢圓G相交于不同的兩點M、N兩點,是否存在實數(shù)k使∠MPO=∠NPO成立,若存在,求出k的值;若不存在,請說明理由;
    (3)若過點(1,0)的直線與橢圓G相交于不同的兩點M、N兩點,記△PMQ、△PNQ的面積記為S1、S2,求
    S
    1
    S
    2
    的取值范圍.

    發(fā)布:2024/10/9 10:0:1組卷:155引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正