費(fèi)馬數(shù)是以法國(guó)數(shù)學(xué)家費(fèi)馬命名的一組自然數(shù),具有形式為22n+1(記做Fn),其中n為非負(fù)數(shù).費(fèi)馬對(duì)n=0,1,2,3,4的情形做了檢驗(yàn),發(fā)現(xiàn)這組費(fèi)馬公式得到的數(shù)都是素?cái)?shù),便提出猜想:費(fèi)馬數(shù)是質(zhì)數(shù).直到1732年,數(shù)學(xué)家歐拉發(fā)現(xiàn)F5=225+1為合數(shù),宣布費(fèi)馬猜想不成立.?dāng)?shù)列{an}滿足an=log2(Fn-1),則數(shù)列{an}的前n項(xiàng)和Sn滿足Sn>2020的最小自然數(shù)是( ?。?/h1>
2
2
n
+
1
(
F
5
=
2
2
5
+
1
【考點(diǎn)】數(shù)列的求和;歸納推理.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:32引用:1難度:0.6
相似題
-
1.已知數(shù)列{an}滿足a1=1,且
an+1=an(n∈N*).記bn=anan+1,Tn為數(shù)列{bn}的前n項(xiàng)和,則使Tn>2成立的最小正整數(shù)n為( ?。?/h2>31232發(fā)布:2024/12/23 22:30:3組卷:106引用:1難度:0.5 -
2.數(shù)列{an}滿足a1=
,an+1=2an,數(shù)列12的前n項(xiàng)積為Tn,則T5=( ?。?/h2>{1an}發(fā)布:2024/12/18 2:30:2組卷:107引用:3難度:0.7 -
3.求值:1-3+5-7+9-11+?+2021-2023+2025=( ?。?/h2>
發(fā)布:2024/12/17 21:30:1組卷:64引用:1難度:0.8
把好題分享給你的好友吧~~