如圖,已知△ABC為等腰直角三角形,∠BAC=90°,AB=AC.
(1)如圖1,點M是BC的中點,點D在AB邊上,連接MD,過點M作ME⊥MD交AC于點E,連接AM,求證:AD=CE;
(2)如圖2,在(1)的條件下,過點A作AF∥MD交BC于點F,點G在AB邊上,連接CG交AF于點N,交DM于點H,若GA=GN,求證:CN=AE-CE;
(3)如圖3,已知點E在AC上,點D在BA延長線上且CE=2AD,連接ED并以ED為邊向左側(cè)作等腰直角△DEH,且∠EDH=90°,DH=DE,點M為AC上一點且BC=2CM,當MH取最小值時請直接寫出HM2BC2的值.
CE
=
2
AD
H
M
2
B
C
2
【考點】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/22 3:0:20組卷:189引用:2難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1658引用:10難度:0.1
把好題分享給你的好友吧~~