試卷征集
加入會(huì)員
操作視頻

若等腰直角三角形的外接圓半徑的長(zhǎng)為2,則其內(nèi)切圓半徑的長(zhǎng)為( ?。?/h1>

【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2720引用:61難度:0.9
相似題
  • 1.如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=40°,點(diǎn)I是△ABC的內(nèi)心,BI的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)D,連接AD,則∠CAD的度數(shù)為(  )

    發(fā)布:2024/12/15 5:0:1組卷:541引用:5難度:0.6
  • 2.如圖,⊙O是Rt△ABC的內(nèi)切圓,∠B=90°.
    (1)若AB=4,BC=3,
    ①求Rt△ABC外接圓的半徑;
    ②求Rt△ABC內(nèi)切圓的半徑;
    (2)連接AO并延長(zhǎng)交BC于點(diǎn)D,若AB=6,tan∠CAD=
    1
    3
    ,求此⊙O的半徑.

    發(fā)布:2024/12/23 12:0:2組卷:555引用:2難度:0.4
  • 3.如圖,O是△ABC的角平分線(xiàn)BO,CO的交點(diǎn),請(qǐng)用∠A表示∠O.
    某同學(xué)的做法如下:
    ∵O是△ABC的角平分線(xiàn)BO,CO的交點(diǎn),
    1
    =
    1
    2
    ABC
    ,
    2
    =
    1
    2
    ACB

    1
    +
    2
    =
    1
    2
    ABC
    +
    1
    2
    ACB
    =
    1
    2
    ABC
    +
    ACB

    又∵∠ABC+∠ACB=180°-∠A,
    1
    +
    2
    =
    1
    2
    180
    °
    -
    A
    =
    90
    °
    -
    1
    2
    A
    ,
    ∴在△BOC中,∠O=180°-(∠1+∠2)=180°-(90°-
    1
    2
    ∠A)=90°+
    1
    2
    ∠A.
    下列說(shuō)法正確的是( ?。?/h2>

    發(fā)布:2024/12/23 15:30:2組卷:141引用:2難度:0.6
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正