已知圓C1:x2+y2-2x+4y-4=0和圓C2:4x2+4y2-16x-16y+31=0,則這兩個(gè)圓的公切線的條數(shù)為( ?。?/h1>
【考點(diǎn)】兩圓的公切線條數(shù)及方程的確定;圓與圓的位置關(guān)系及其判定.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/28 2:0:1組卷:12引用:3難度:0.7
相似題
-
1.若圓C1:x2+y2-2x-4y-4=0,圓C2:x2+y2-6x-10y-2=0,則C1,C2的公切線條數(shù)為( )
A.1 B.2 C.3 D.4 發(fā)布:2024/10/24 5:0:2組卷:195引用:2難度:0.7 -
2.已知圓M:
與圓N:(x+1)2+(y-2a)2=(2-1)2有兩條公切線,則實(shí)數(shù)a的取值范圍是( ?。?/h2>(x-a)2+y2=(2+1)2A.(-1,1) B. (-75,0)∪(23,1)C. (-1,35)D. (-75,-1)∪(35,1)發(fā)布:2024/10/23 5:0:2組卷:56引用:3難度:0.6 -
3.已知圓C1:x2+y2=1與圓C2:(x+3)2+(y+4)2=16,則兩圓的公切線條數(shù)為( ?。?/h2>
A.1 B.2 C.3 D.4 發(fā)布:2024/10/25 3:0:4組卷:76引用:1難度:0.7
把好題分享給你的好友吧~~