把代數(shù)式通過配湊等手段,得到局部完全平方式,再進行有關(guān)運算和解題,這種解題方法叫做配方法.
如:M=a2-2ab+2b2-2b+2,利用配方法求M的最小值,
解:a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1=(a-b)2+(b-1)2+1.
∵(a-b)2≥0,(b-1)2≥0,
∴當(dāng)a=b=1時,M有最小值1.
請根據(jù)上述材料解決下列問題:
(1)在橫線上添加一個常數(shù),使之成為完全平方式:x2-23x+1919.
(2)若M=14x2+2x-1,求M的最小值.
(3)已知x2+2y2+z2-2xy-2y+4z+5=0,則x+y+z的值為 00.
2
3
1
9
1
9
1
4
x
2
【答案】;0
1
9
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:423引用:2難度:0.5