把代數(shù)式通過(guò)配湊等手段,得到局部完全平方式,再進(jìn)行有關(guān)運(yùn)算和解題,這種解題方法叫做配方法.
如:M=a2-2ab+2b2-2b+2,利用配方法求M的最小值,
解:a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1=(a-b)2+(b-1)2+1.
∵(a-b)2≥0,(b-1)2≥0,
∴當(dāng)a=b=1時(shí),M有最小值1.
請(qǐng)根據(jù)上述材料解決下列問(wèn)題:
(1)在橫線上添加一個(gè)常數(shù),使之成為完全平方式:x2-23x+1919.
(2)若M=14x2+2x-1,求M的最小值.
(3)已知x2+2y2+z2-2xy-2y+4z+5=0,則x+y+z的值為 00.
2
3
1
9
1
9
1
4
x
2
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】;0
1
9
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:415引用:2難度:0.5
把好題分享給你的好友吧~~