已知拋物線Γ:y2=2px的焦點為F(1,0).
(1)求拋物線Γ的方程;
(2)若動點P在拋物線Γ上,線段PF的中點為Q,求點Q的軌跡方程;
(3)過點T(t,0)(t>0)作兩條互相垂直的直線l1,l2;直線l1交拋物線Γ于A,B兩點,直線l2交拋物線Γ于C,D兩點,且點M,N分別為線段AB,CD的中點,求△TMN的面積的最小值.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/20 8:0:2組卷:77引用:2難度:0.5
相似題
-
1.拋物線x2=4y的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足AF⊥BF,P為線段AB的中點,設P在l上的射影為Q,則
的最大值是( ?。?/h2>|PQ||AB|發(fā)布:2024/12/29 5:30:3組卷:448難度:0.5 -
2.如圖,設拋物線y2=2px的焦點為F,過x軸上一定點D(2,0)作斜率為2的直線l與拋物線相交于A,B兩點,與y軸交于點C,記△BCF的面積為S1,△ACF的面積為S2,若
,則拋物線的標準方程為( ?。?/h2>S1S2=14發(fā)布:2024/12/17 0:0:2組卷:159引用:6難度:0.6 -
3.如圖,已知點P是拋物線C:y2=4x上位于第一象限的點,點A(-2,0),點M,N是y軸上的兩個動點(點M位于x軸上方),滿足PM⊥PN,AM⊥AN,線段PN分別交x軸正半軸、拋物線C于點D,Q,射線MP交x軸正半軸于點E.
(Ⅰ)若四邊形ANPM為矩形,求點P的坐標;
(Ⅱ)記△DOP,△DEQ的面積分別為S1,S2,求S1?S2的最大值.發(fā)布:2024/12/29 1:0:8組卷:83引用:2難度:0.4
把好題分享給你的好友吧~~