已知拋物線T的頂點在原點,對稱軸為坐標軸,且過(-2,1),(1,14),(-2,-2),(3,-2)四點中的兩點.
(1)求拋物線T的方程:
(2)已知圓x2+(y-2)2=3,過點P(m,-1)(m≠±3)作圓的兩條切線,分別交拋物線T于A(x1,y1),B(x2,y2)和C(x3,y3),D(x4,y4)四個點,試判斷x1x2x3x4是否是定值?若是定值,求出定值,若不是定值,請說明理由.
(
1
,
1
4
)
P
(
m
,-
1
)
(
m
≠±
3
)
【考點】直線與圓錐曲線的綜合;拋物線的標準方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/20 15:0:1組卷:101引用:4難度:0.2
相似題
-
1.已知F1,F(xiàn)2是橢圓E:
+x2a2=1(a>b>0)的左右焦點,過F2作長軸的垂線,在第一象限和橢圓交于點H,且tan∠HF1F2=y2b2.34
(1)求橢圓的離心率;
(2)若橢圓的準線方程為x=±4,一條過原點O的動直線l1與橢圓交于A,B兩點,N為橢圓上滿足|NA|=|NB|的一點,試求5+1|OA|2+1|OB|2的值;2|ON|2
(3)設(shè)動直線l2:y=kx+m與橢圓有且只有一個公共點P,且與直線x=4相交于點Q,若x軸上存在一定點M(1,0),使得PM⊥QM,求橢圓的方程.發(fā)布:2024/12/1 8:0:1組卷:29引用:1難度:0.1 -
2.動點M(x,y)與定點F(4,0)的距離和它到定直線l:x=
的距離的比是常數(shù)94.43
(1)求動點M的軌跡方程;
(2)直線l:y=kx+b與M的軌跡交于A,B兩點,AB的中點坐標為(6,2),求直線l的方程.發(fā)布:2024/12/6 23:0:1組卷:280引用:4難度:0.5 -
3.定義:圓錐曲線
的兩條相互垂直的切線的交點Q的軌跡是以坐標原點為圓心,C:x2a2+y2b2=1為半徑的圓,這個圓稱為蒙日圓.已知橢圓C的方程為a2+b2,P是直線l:x+2y-3=0上的一點,過點P作橢圓C的兩條切線與橢圓相切于M、N兩點,O是坐標原點,連接OP,當(dāng)∠MPN為直角時,則kOP=( ?。?/h2>x25+y24=1發(fā)布:2024/12/3 6:0:1組卷:122引用:3難度:0.6
把好題分享給你的好友吧~~