設(shè)a1=1,an+1=a2n-2an+2+b(n∈N*)
(Ⅰ)若b=1,求a2,a3及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若b=-1,問:是否存在實(shí)數(shù)c使得a2n<c<a2n+1對(duì)所有的n∈N*成立,證明你的結(jié)論.
a
2
n
-
2
a
n
+
2
【考點(diǎn)】數(shù)學(xué)歸納法;數(shù)列遞推式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1355引用:7難度:0.1
相似題
-
1.用數(shù)學(xué)歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項(xiàng)是( ?。?/h2>56發(fā)布:2024/12/17 12:30:2組卷:387引用:10難度:0.9 -
2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=4an-4n+1-4(n∈N*),令
.bn=an4n
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若f(n)=an-2(n∈N*),用數(shù)學(xué)歸納法證明f(n)是18的倍數(shù).發(fā)布:2024/10/27 17:0:2組卷:36引用:2難度:0.3 -
3.已知n為正整數(shù),請(qǐng)用數(shù)學(xué)歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:423引用:1難度:0.7
把好題分享給你的好友吧~~