對于函數(shù)f(x),若在其定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)若f(x)=2x-m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(2)若f(x)=4x-n?2x+1+n2-3為定義域R上的“局部奇函數(shù)”,求實數(shù)n的取值范圍.
【考點】奇偶函數(shù)圖象的對稱性.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:230引用:4難度:0.4
相似題
-
1.教材87頁第13題有以下閱讀材料:我們知道,函數(shù)y=f(x)的圖象關(guān)于坐標(biāo)原點成中心對稱圖形的充要條件是函數(shù)y=f(x)為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)y=f(x)的圖象關(guān)于點P(a,b)成中心對稱圖形的充要條件是函數(shù)y=f(x+a)-b為奇函數(shù).
(1)利用上述材料,求函數(shù)f(x)=x3-3x2+6x-2圖象的對稱中心;
(2)利用函數(shù)單調(diào)性的定義,證明函數(shù)f(x)=x3-3x2+6x-2在區(qū)間(-∞,+∞)上是增函數(shù).
附立方差公式:a3-b3=(a-b)(a2+ab+b2).發(fā)布:2024/10/12 13:0:2組卷:211引用:3難度:0.6 -
2.函數(shù)y=(x-1)3+2的對稱中心是 .
發(fā)布:2024/11/10 11:30:2組卷:373引用:2難度:0.8 -
3.函數(shù)
的圖象( ?。?/h2>f(x)=(1-21+2x)tanx發(fā)布:2024/12/29 0:0:2組卷:275引用:4難度:0.9
把好題分享給你的好友吧~~