在極坐標(biāo)系中,曲線C的方程為ρ+4cos(π2-θ)=0,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy.
(Ⅰ)求曲線C的直角坐標(biāo)方程,并說明C是什么曲線;
(Ⅱ)直線l的參數(shù)方程為x=1+tcosα y=-2+tsinα
(t為參數(shù),0≤α<π),點(diǎn)P的直角坐標(biāo)為(1,-2),直線l與曲線C交于A,B兩點(diǎn),求|PA|-|PB|的最大值.
π
2
-
θ
x = 1 + tcosα |
y = - 2 + tsinα |
【考點(diǎn)】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:111引用:3難度:0.6
相似題
-
1.已知曲線的參數(shù)方程
(θ為參數(shù)),當(dāng)參數(shù)x=2sinθy=cos2θ時,對應(yīng)的點(diǎn)的坐標(biāo)是( )θ=π6發(fā)布:2024/11/29 5:0:2組卷:7引用:1難度:0.7 -
2.直線l的極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數(shù)方程為
(t為參數(shù)),圓C2的普通方程為x2+y2+2x=costy=1+sintx=0.3
(1)求C1,C2的極坐標(biāo)方程;
(2)若l與C1交于點(diǎn)A,l與C2交于點(diǎn)B,當(dāng)|AB|=2時,求△ABC2的面積.發(fā)布:2024/10/20 2:0:1組卷:12引用:1難度:0.5 -
3.將參數(shù)方程
(但為參數(shù))化為普通方程為( ?。?/h2>x=2+sinθy=sinθ發(fā)布:2024/11/29 5:0:2組卷:9引用:1難度:0.7
把好題分享給你的好友吧~~