已知函數(shù)f(x)=2ae-x-sinx+1,f′(x)是f(x)的導函數(shù),且f′(0)=0.
(Ⅰ)求a的值,并證明函數(shù)f(x)在x=0處取得極值;
(Ⅱ)證明:f(x)在區(qū)間[2kπ,2kπ+π2](k∈N)有唯一零點.
[
2
kπ
,
2
kπ
+
π
2
]
(
k
∈
N
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:70引用:1難度:0.2
相似題
-
1.已知函數(shù)
有兩個極值點x1,x2(x1≠x2),若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,則實數(shù)a的值可以是( )f(x)=13x3+ax2+x發(fā)布:2024/12/19 2:30:1組卷:55引用:2難度:0.6 -
2.若函數(shù)f(x)=lnx-ax在區(qū)間(3,4)上有極值點,則實數(shù)a的取值范圍是( )
發(fā)布:2024/12/19 14:0:2組卷:460引用:7難度:0.8 -
3.若函數(shù)f(x)=x2-ax+lnx有兩個極值點,則a的取值范圍為( ?。?/h2>
發(fā)布:2024/12/19 6:0:1組卷:61引用:1難度:0.5
把好題分享給你的好友吧~~