把右半個(gè)橢圓C1:x24+y23=1(x≥0)和圓弧C2:(x-1)2+y2=4(x<0)合成的封閉曲線Γ稱為“曲圓”,“曲圓”與x軸的左、右交點(diǎn)依次記為A1、A2,與y軸的上、下交點(diǎn)依次記為B1、B2,過(guò)橢圓的右焦點(diǎn)F的直線l與“曲圓”交于P、Q兩點(diǎn).
(1)當(dāng)點(diǎn)Q與B2重合時(shí),求△A1PQ的周長(zhǎng);
(2)當(dāng)P、Q兩點(diǎn)都在半橢圓C1時(shí),是否存在以PQ為直徑的圓恰好經(jīng)過(guò)點(diǎn)A1?若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P在第一象限時(shí),求△A1PQ的面積的最大值.
C
1
:
x
2
4
+
y
2
3
=
1
(
x
≥
0
)
C
2
:
(
x
-
1
)
2
+
y
2
=
4
(
x
<
0
)
【考點(diǎn)】直線與圓錐曲線的綜合;橢圓的幾何特征.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/15 8:0:9組卷:69引用:2難度:0.3
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過(guò)點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過(guò)點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問(wèn)在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:66引用:5難度:0.7 -
2.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.5
(1)求曲線C的方程;
(2)過(guò)F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
3.若過(guò)點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7