已知函數(shù)f(x)=aex-1x+e(lnx-x),a∈R.
(1)若f(x)在(1,+∞)上單調(diào)遞增,求a的取值范圍;
(2)當(dāng)a≥52時(shí),證明:f(x)+(e-1)x>ex-1(1-lnx)+elnx.
f
(
x
)
=
a
e
x
-
1
x
+
e
(
lnx
-
x
)
a
≥
5
2
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/4 2:0:2組卷:140引用:6難度:0.5
相似題
-
1.設(shè)
,則( ?。?/h2>a=12,b=ln32,c=π2sin12發(fā)布:2024/12/20 7:0:1組卷:130引用:3難度:0.6 -
2.已知函數(shù)
,對(duì)?x1,f(x)=exx-12ax,當(dāng)x1>x2時(shí),恒有x2∈[12,2],則實(shí)數(shù)a的取值范圍為( ?。?/h2>f(x1)x2>f(x2)x1發(fā)布:2024/12/20 1:30:2組卷:97引用:1難度:0.4 -
3.已知
,則( ?。?/h2>a=log40.4,b=log0.40.2,c=0.40.2發(fā)布:2024/12/20 13:30:1組卷:38引用:2難度:0.7
把好題分享給你的好友吧~~