菁于教,優(yōu)于學(xué)
旗下產(chǎn)品
校本題庫(kù)
菁優(yōu)備課
開(kāi)放平臺(tái)
菁優(yōu)測(cè)評(píng)
菁優(yōu)公式
小優(yōu)同學(xué)
菁優(yōu)App
數(shù)字備考
充值服務(wù)
試卷征集
申請(qǐng)校本題庫(kù)
智能組卷
錯(cuò)題庫(kù)
五大核心功能
組卷功能
資源共享
在線作業(yè)
在線測(cè)評(píng)
試卷加工
游客模式
登錄
試題
試題
試卷
課件
試卷征集
加入會(huì)員
操作視頻
初中數(shù)學(xué)
小學(xué)
數(shù)學(xué)
語(yǔ)文
英語(yǔ)
奧數(shù)
科學(xué)
道德與法治
初中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語(yǔ)文
英語(yǔ)
道德與法治
歷史
科學(xué)
信息技術(shù)
高中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語(yǔ)文
英語(yǔ)
政治
歷史
信息
通用
中職
數(shù)學(xué)
語(yǔ)文
英語(yǔ)
推薦
章節(jié)挑題
知識(shí)點(diǎn)挑題
智能挑題
收藏挑題
試卷中心
匯編專輯
細(xì)目表組卷
組卷圈
當(dāng)前位置:
2023年浙江省衢州市龍游三中中考數(shù)學(xué)一模試卷
>
試題詳情
(1)閱讀理解
我國(guó)是最早了解勾股定理的國(guó)家之一,它被記載于我國(guó)古代的數(shù)學(xué)著作《周髀算經(jīng)》中.漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅如圖①所示的“弦圖”,后人稱之為“趙爽弦圖”.
根據(jù)“趙爽弦圖”寫出勾股定理和推理過(guò)程;
(2)問(wèn)題解決
勾股定理的證明方法有很多,如圖②是古代的一種證明方法:過(guò)正方形ACDE的中心O,作FG⊥HP,將它分成4份,所分成的四部分和以BC為邊的正方形恰好能拼成以AB為邊的正方形.若AC=12,BC=5,求EF的值;
(3)拓展探究
如圖③,以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過(guò)程就可以得到“勾股樹(shù)”的部分圖形.設(shè)大正方形N的邊長(zhǎng)為定值n,小正方形A,B,C,D的邊長(zhǎng)分別為a,b,c,d.
已知∠1=∠2=∠3=α,當(dāng)角α(0°<α<90°)變化時(shí),探究b與c的關(guān)系式,并寫出該關(guān)系式及解答過(guò)程(b與c的關(guān)系式用含n的式子表示).
【考點(diǎn)】
四邊形綜合題
.
【答案】
見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
當(dāng)前模式為游客模式,
立即登錄
查看試卷全部?jī)?nèi)容及下載
發(fā)布:2024/6/27 10:35:59
組卷:1114
引用:4
難度:0.2
相似題
1.
有這樣一個(gè)問(wèn)題:如圖,在四邊形ABCD中,AB=AD,CB=CD,我們把這種兩組鄰邊分別相等的四邊形叫做箏形,請(qǐng)?zhí)骄抗~形的性質(zhì)和判定方法.
小南根據(jù)學(xué)習(xí)四邊形的經(jīng)驗(yàn),對(duì)箏形的性質(zhì)和判定方法進(jìn)行了探究.
下面是小南的探究過(guò)程:
(1)由箏形的定義可知,箏形的邊的性質(zhì)時(shí):箏形的兩組鄰邊分別相等,關(guān)于箏形的角的性質(zhì),通過(guò)測(cè)量,折紙的方法,猜想:箏形有一組對(duì)角相等.
請(qǐng)將下面證明此猜想的過(guò)程補(bǔ)充完整:
已知:如圖,在箏形ABCD中,AB=AD,CB=CD.
求證:
.
由以上證明可得,箏形的角的性質(zhì)是:箏形有一組對(duì)角相等.
(2)連接箏形的兩條對(duì)角線,探究發(fā)現(xiàn)箏形的另一條性質(zhì):箏形的一條對(duì)角線平分另一條對(duì)角線,結(jié)合圖形,寫出箏形的其他性質(zhì)(一條即可):
(3)箏形的定義是判定一個(gè)四邊形為箏形的方法之一,試判斷命題“一組對(duì)角相等,一條對(duì)角線平分另一條對(duì)角線的四邊形是”是否成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)反例,畫出圖形,并加以證明.
發(fā)布:2024/11/7 8:0:2
組卷:134
引用:1
難度:0.1
解析
2.
如圖,四邊形ABCD中,AD=CD,AB=CB.我們把這種兩組鄰邊分別相等的凸四邊形叫做箏形.AC,BD叫做箏形的對(duì)角線.請(qǐng)你通過(guò)觀察、測(cè)量、折紙等方法進(jìn)行探究,并回答以下問(wèn)題:
(1)判斷下列結(jié)論是否正確;
a.∠DAB=∠DCB;
b.∠ABC=∠ADC;
c.BD分別平分∠ABC和∠ADC
d.箏形是軸對(duì)稱圖形,它有兩條對(duì)稱軸.
(2)請(qǐng)你選擇下列問(wèn)題中的一個(gè)進(jìn)行證明:
a.從(1)中選擇一個(gè)正確的結(jié)論進(jìn)行證明;
b.通過(guò)探究,再找到一條箏形的性質(zhì),并進(jìn)行證明.
發(fā)布:2024/11/7 8:0:2
組卷:108
引用:2
難度:0.3
解析
3.
從圖1的風(fēng)箏圖形可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.具體定義如下:如圖2,在四邊形ABCD中,AB=AD,BC=DC,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.
(1)結(jié)合圖3,通過(guò)觀察、測(cè)量,可以猜想“箏形”具有諸如“AC平分∠BAD和∠BCD”這樣的性質(zhì),請(qǐng)結(jié)合圖形,再寫出兩條“箏形”的性質(zhì):
①
;
②
.
(2)從你寫出的兩條性質(zhì)中,任選一條“箏形”的性質(zhì)給出證明.
發(fā)布:2024/11/7 8:0:2
組卷:220
引用:7
難度:0.5
解析
把好題分享給你的好友吧~~
商務(wù)合作
服務(wù)條款
走進(jìn)菁優(yōu)
幫助中心
兼職招聘
意見(jiàn)反饋
深圳市菁優(yōu)智慧教育股份有限公司
粵ICP備10006842號(hào)
公網(wǎng)安備44030502001846號(hào)
?2010-2024 jyeoo.com 版權(quán)所有
深圳市市場(chǎng)監(jiān)管
主體身份認(rèn)證
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2 |
隱私協(xié)議
第三方SDK
用戶服務(wù)條款
廣播電視節(jié)目制作經(jīng)營(yíng)許可證
出版物經(jīng)營(yíng)許可證
網(wǎng)站地圖
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正