試卷征集
加入會員
操作視頻

我們學習了勾股定理后,都知道“勾三、股四、弦五”.
(1)觀察:3,4,5;5,12,13;7,24,25;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.事實上,勾是三時,股和弦的算式分別是
1
2
9
-
1
1
2
9
+
1
;勾是五時,股和弦的算式分別是
1
2
25
-
1
,
1
2
25
+
1
.根據(jù)你發(fā)現(xiàn)的規(guī)律,分別寫出勾是七時,股和弦的算式;
(2)根據(jù)(1)的規(guī)律,請用含n(n為奇數(shù),且n≥3)的代數(shù)式來表示所有這些勾股數(shù)的勾、股、弦,合情猜想它們之間的相等關系(請寫出兩種),并對其中一種猜想加以證明;
(3)繼續(xù)觀察4,3,5;6,8,10;8,15,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.運用類似上述探索的方法,直接用m(m為偶數(shù),且m>4)的代數(shù)式來表示股和弦.

【考點】勾股定理
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:4053引用:3難度:0.1
相似題
  • 1.我們把邊長與面積都是整數(shù)的三角形稱“整數(shù)三角形”,例如邊長為3,4,5的三角形因為其面積等于6,所以它是一個“整數(shù)三角形”如圖(1),小明在研究時發(fā)現(xiàn),直角三角形中存在大量的“整數(shù)三角形”;小穎在研究時發(fā)現(xiàn),等腰三角形中也存在大量的”整數(shù)三角形”,
    (1)如圖(2),已知Rt△ABC中,∠ACB=90°,AC=8,BC=15,△ABC是一個”整數(shù)三角形”嗎?請說明理由;
    (2)請在下面分別畫出一個周長為24的直角“整數(shù)三角形”和一個周長小于32的等腰“整數(shù)三角形”,說明:在圖中標注每條邊的長.
    (3)小明經(jīng)過研究發(fā)現(xiàn)非等腰的鈍角三角形中也存在“整數(shù)三角形”,請畫出一個非等腰的鈍角“整數(shù)三角形”,使其周長等于32,說明:畫出計算面積所需的三角形的高,并在圖上標出高和邊長的數(shù)值.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/4 8:0:2組卷:133引用:1難度:0.5
  • 菁優(yōu)網(wǎng)2.如圖,以Rt△ABC的三邊為直徑分別向外作半圓,若斜邊AB=3,則圖中陰影部分的面積為(  )

    發(fā)布:2024/11/2 14:0:2組卷:2547引用:14難度:0.7
  • 菁優(yōu)網(wǎng)3.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BH平分∠ABC,BH=6,P是邊AB上一動點,則H,P之間的最小距離為( ?。?/h2>

    發(fā)布:2024/11/6 22:30:2組卷:148引用:4難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正