已知數(shù)列{an}滿足a1=1,an+1=1-14an,其中n∈N*.
(1)設(shè)bn=22an-1,求證:數(shù)列{bn}是等差數(shù)列.
(2)在(1)的條件下,求數(shù)列{bn2n+1}的前n項(xiàng)和Sn.
(3)在(1)的條件下,若cn=6n+(-1)n-1?λ?2bn,是否存在實(shí)數(shù)λ,使得對(duì)任意的n∈N*,都有cn+1>cn,若存在,求出λ的取值范圍;若不存在,說(shuō)明理由.
a
n
+
1
=
1
-
1
4
a
n
b
n
=
2
2
a
n
-
1
{
b
n
2
n
+
1
}
c
n
=
6
n
+
(
-
1
)
n
-
1
?
λ
?
2
b
n
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:752引用:6難度:0.3
相似題
-
1.已知數(shù)列{an}、{bn}滿足
,若數(shù)列{an}是等比數(shù)列且a1=3,b4=4+b3.a1a2a3?an=3bn
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令cn=,求{cn}的前n項(xiàng)和為Sn.2bn(n+1)an發(fā)布:2024/12/6 20:30:1組卷:179引用:3難度:0.6 -
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S8=100,a2=5,設(shè)數(shù)列{bn}的前n項(xiàng)和為Pn=2n+1-2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項(xiàng)和為Tn.發(fā)布:2024/12/7 19:0:1組卷:57引用:2難度:0.6 -
3.已知數(shù)列{an}中,a1=1,且an+1=2an+2n(n∈N*).
(1)求證:數(shù)列{}是等差數(shù)列,并求出an;an2n
(2)數(shù)列{an}前n項(xiàng)和為Sn,求Sn.發(fā)布:2024/12/7 22:0:2組卷:443引用:3難度:0.7
把好題分享給你的好友吧~~