已知函數f(x)=alnx-x2+3x+3a.
(Ⅰ)當a=2時,求f(x)的極值.
(Ⅱ)討論f(x)的單調性;
(Ⅲ)若0<a<14,證明:f(x)<exx-x2+3x.
0
<
a
<
1
4
f
(
x
)
<
e
x
x
-
x
2
+
3
x
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/12/29 11:0:2組卷:505引用:5難度:0.3
相似題
-
1.已知函數f(x)=(x-a)lnx(a∈R),它的導函數為f'(x).
(1)當a=1時,求f'(x)的零點;
(2)若函數f(x)存在極小值點,求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數
有兩個極值點,則實數a的取值范圍為( )f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設f'(x)是f(x)的導函數,f″(x)是函數f'(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.經過探究發(fā)現(xiàn):任何一個三次函數都有“拐點”且“拐點”就是三次函數圖像的對稱中心,已知函數
的對稱中心為(1,1),則下列說法中正確的有( )f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:149難度:0.5
把好題分享給你的好友吧~~