圓M:(x-2)2+(y-1)2=1,圓N:(x+2)2+(y+1)2=1,則兩圓的一條公切線方程為( )
x - 2 y + 5 = 0 | x - 2 y - 5 = 0 |
【答案】C;D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/15 2:0:1組卷:435引用:4難度:0.5
相似題
-
1.若圓C1:x2+y2-2x-4y-4=0,圓C2:x2+y2-6x-10y-2=0,則C1,C2的公切線條數(shù)為( ?。?/h2>
A.1 B.2 C.3 D.4 發(fā)布:2024/10/24 5:0:2組卷:195引用:2難度:0.7 -
2.已知圓M:
與圓N:(x+1)2+(y-2a)2=(2-1)2有兩條公切線,則實數(shù)a的取值范圍是( ?。?/h2>(x-a)2+y2=(2+1)2A.(-1,1) B. (-75,0)∪(23,1)C. (-1,35)D. (-75,-1)∪(35,1)發(fā)布:2024/10/23 5:0:2組卷:56引用:3難度:0.6 -
3.已知圓C1:x2+y2=1與圓C2:(x+3)2+(y+4)2=16,則兩圓的公切線條數(shù)為( )
A.1 B.2 C.3 D.4 發(fā)布:2024/10/25 3:0:4組卷:76引用:1難度:0.7
把好題分享給你的好友吧~~