在平面直角坐標系xOy中,拋物線y=x2+bx+c(b、c為常數(shù))經(jīng)過點A(0,-3)和點B(3,0),點M在此拋物線,點M的橫坐標為m,點M不與A、B重合.
(1)求此拋物線所對應的函數(shù)表達式.
(2)當S△OAM=2S△AOB,求點M的坐標.
(3)作點A關(guān)于拋物線對稱軸的對稱點為點C,當點M到直線AC的距離是點M到x軸距離2倍時,求m的值.
(4)設(shè)點E的坐標為(-m-2,m),點F的坐標為(2m-2,m),連接EF.當拋物線在B、M兩點之間的部分(包含B、M兩點)與線段EF有1個公共點時,直接寫出m的取值范圍.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:121引用:3難度:0.2
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3613引用:36難度:0.4 -
2.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2654引用:7難度:0.7
把好題分享給你的好友吧~~