【模型呈現(xiàn):材料閱讀】
如圖1,點B,C,E在同一直線上,點A,D在直線CE的同側(cè),△ABC和△CDE均為等邊三角形,AE,BD交于點F,對于上述問題,存在結(jié)論(不用證明):
(1)△BCD≌△ACE.
(2)△ACE可以看作是由△BCD繞點C旋轉(zhuǎn)而成.
【模型改編:問題解決]
點A,D在直線CE的同側(cè),AB=AC,ED=EC,∠BAC=∠DEC=50°,直線AE,BD交于F,如圖1:點B在直線CE上,
①求證:△BCD∽△ACE.
②求∠AFB的度數(shù).
如圖2:將△ABC繞點C順時針旋轉(zhuǎn)一定角度.
③補全圖形,則∠AFB的度數(shù)為 114°114°.
④若將“∠BAC=∠DEC=50°”改為“∠BAC=∠DEC=m°”,則∠AFB的度數(shù)為 90°+m°290°+m°2.(直接寫結(jié)論)
【模型拓廣:問題延伸]
(3)如圖3:在矩形ABCD和矩形DEFG中,AB=2,AD=ED=23,DG=6,連接AG,BF,求BFAG的值.
m
°
2
m
°
2
3
BF
AG
【考點】相似形綜合題.
【答案】114°;90°+
m
°
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/30 0:0:8組卷:436引用:4難度:0.2
相似題
-
1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點,P是腰AB上一動點,連接PE并延長,交射線CD于點M,作EF⊥PE,交下底BC于點F,連接MF交AD于點N,連接PF,AB=AD=4,BC=6,點A、P之間的距離為x,△PEF的面積為y.
(1)當(dāng)點F與點C重合時,求x的值;
(2)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)當(dāng)∠CMF=∠PFE時,求△PEF的面積.發(fā)布:2025/1/28 8:0:2組卷:240引用:1難度:0.5 -
2.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點,連接DE.則△CDE與△CAB的面積比為.
【探究】將圖①的△CDE繞著點C按順時針方向旋轉(zhuǎn)一定角度,使點E落在△ABC內(nèi)部,連接AD、BE,并延長BE分別交AC、AD于點O、F,其它條件不變,如圖②.
(1)求證:△ACD∽△BCE.
(2)求證:AD⊥BF.
【應(yīng)用】將圖②的△CDE繞著點C按順時針方向旋轉(zhuǎn),使點D恰好落在邊BC的延長線上,連接AD、BE,BE的延長線交AD于點F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長為.發(fā)布:2025/1/28 8:0:2組卷:300引用:1難度:0.1 -
3.【閱讀】“關(guān)聯(lián)”是解決數(shù)學(xué)問題的重要思維方式,角平分線的有關(guān)聯(lián)想就有很多……
(1)【問題提出】如圖①,PC是△PAB的角平分線,求證.PAPB=ACBC小明思路:關(guān)聯(lián)“平行線、等腰三角形”,過點B作BD∥PA,交PC的延長線于點D,利用“三角形相似”.
小紅思路:關(guān)聯(lián)“角平分線上的點到角的兩邊的距離相等”,過點C分別作CD⊥PA交PA于點D,作CE⊥PB交PB于點E,利用“等面積法”.
(2)【理解應(yīng)用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點D,則BD長度為 ;
(3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點,連接AD,將△ACD沿AD所在直線折疊點C恰好落在邊AB上的E點處.若AC=1,AB=2,則DE的長為 ;
(4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線,AD的垂直平分線EF交BC延長線于F,連接AF,當(dāng)BD=3時,AF的長為 .發(fā)布:2025/1/28 8:0:2組卷:312引用:1難度:0.1