試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)如圖,在三棱柱BCD-B1C1D1與四棱錐A-BB1D1D的組合體中,已知BB1⊥CD,四邊形ABCD是菱形,∠ABC=120°,AD=2,BB1=1,
A
D
1
=
5

(1)求證:DD1⊥平面ABCD.
(2)點P為直線B1D1上的動點,求平面PAB與平面DBB1D1所成角的余弦值的取值范圍.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/23 7:0:1組卷:34引用:1難度:0.4
相似題
  • 1.正四棱錐P-ABCD,底面四邊形ABCD為邊長為2的正方形,
    PA
    =
    5
    ,其內(nèi)切球為球G,平面α過AD與棱PB,PC分別交于點M,N,且與平面ABCD所成二面角為30°,則平面α截球G所得的圖形的面積為

    發(fā)布:2024/12/5 8:30:6組卷:159引用:4難度:0.5
  • 菁優(yōu)網(wǎng)2.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=4,AB=3,BC=5,點D是線段BC的中點.
    (1)求證:AB⊥A1C;
    (2)求二面角D-CA1-A的余弦值.

    發(fā)布:2024/11/30 13:0:1組卷:321引用:5難度:0.6
  • 菁優(yōu)網(wǎng)3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是等邊三角形,CD⊥平面PAD,E,F(xiàn),G,O分別是PC,PD,BC,AD的中點.
    (1)求證:PO⊥平面ABCD;
    (2)求平面EFG與平面ABCD的夾角的大小;
    (3)線段PA上是否存在點M,使得直線GM與平面EFG所成角為
    π
    6
    ,若存在,求線段PM的長;若不存在,說明理由.

    發(fā)布:2024/12/7 16:30:5組卷:518引用:8難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正