某數(shù)學(xué)興趣小組為研究本校學(xué)生數(shù)學(xué)成績與語文成績的關(guān)系,采取有放回的簡單隨機(jī)抽樣,從學(xué)校抽取樣本容量為200的樣本,將所得數(shù)學(xué)成績與語文成績的樣本觀測(cè)數(shù)據(jù)整理如下:
語文成績 | 合計(jì) | |||
優(yōu)秀 | 不優(yōu)秀 | |||
數(shù)學(xué)成績 | 優(yōu)秀 | 50 | 30 | 80 |
不優(yōu)秀 | 40 | 80 | 120 | |
合計(jì) | 90 | 110 | 200 |
(2)在人工智能中常用
L
(
B
|
A
)
=
P
(
B
|
A
)
P
(
B
|
A
)
(3)現(xiàn)從數(shù)學(xué)成績優(yōu)秀的樣本中,按分層抽樣的方法選出8人組成一個(gè)小組,從抽取的8人里再隨機(jī)抽取3人參加數(shù)學(xué)競賽,求這3人中,語文成績優(yōu)秀的人數(shù)X的概率分布列及數(shù)學(xué)期望.
附:
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
α | 0.050 | 0.010 | 0.001 |
xα | 3.841 | 6.635 | 10.828 |
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:279引用:11難度:0.6
相似題
-
1.每年5月17日為國際電信日,某市電信公司每年在電信日當(dāng)天對(duì)辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計(jì)結(jié)果繪出電信日當(dāng)天參與活動(dòng)的統(tǒng)計(jì)圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機(jī)變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
2.某工廠有甲、乙、丙三條生產(chǎn)線同時(shí)生產(chǎn)同一產(chǎn)品,這三條生產(chǎn)線生產(chǎn)產(chǎn)品的次品率分別為6%,5%,4%,假設(shè)這三條生產(chǎn)線產(chǎn)品產(chǎn)量的比為5:7:8,現(xiàn)從這三條生產(chǎn)線上共任意選取100件產(chǎn)品,則次品數(shù)的數(shù)學(xué)期望為 .
發(fā)布:2024/12/15 19:0:2組卷:104引用:2難度:0.6 -
3.隨機(jī)變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:211引用:9難度:0.6
把好題分享給你的好友吧~~