在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,對(duì)于△ABC和直線l給出如下定義:
若△ABC的一條邊關(guān)于直線l的對(duì)稱線段PQ是⊙O的弦,則稱△ABC是⊙O的關(guān)于直線l的“關(guān)聯(lián)三角形”,直線l是“關(guān)聯(lián)軸”.
(1)如圖1,若△ABC是⊙O的關(guān)于直線l的“關(guān)聯(lián)三角形”,請(qǐng)畫出△ABC與⊙O的“關(guān)聯(lián)軸l”(至少畫兩條);
(2)若△ABC中,點(diǎn)A坐標(biāo)為(2,3),點(diǎn)B坐標(biāo)為(4,1),點(diǎn)C在直線y=-x+3圖象上,存在“關(guān)聯(lián)軸l”使△ABC是⊙O的關(guān)聯(lián)三角形,求點(diǎn)C橫坐標(biāo)的取值范圍;
(3)已知A(3,1),將點(diǎn)A向上平移2個(gè)單位得到點(diǎn)M,以M為圓心MA為半徑畫圓,B,C為⊙M上的兩點(diǎn),且AB=2(點(diǎn)B在點(diǎn)A右側(cè)),若△ABC與⊙O的關(guān)聯(lián)軸至少有兩條,直接寫出OC的最小值和最大值,以及OC最大時(shí)AC的長(zhǎng).
3
【考點(diǎn)】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/10 12:0:2組卷:515引用:3難度:0.1
相似題
-
1.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
2.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3 -
3.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1