如圖1,拋物線y=233x2+bx+c過B(3,0),C(0,-33)兩點(diǎn),動(dòng)點(diǎn)M從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求拋物線y=233x2+bx+c的表達(dá)式;
(2)如圖1,過點(diǎn)M作DE⊥x軸于點(diǎn)D,交拋物線于點(diǎn)E,當(dāng)t=1時(shí),求四邊形OBEC的面積;
(3)如圖2,動(dòng)點(diǎn)N同時(shí)從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿OB方向運(yùn)動(dòng),將△BMN繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)180°得到△GMF′.
①當(dāng)點(diǎn)N運(yùn)動(dòng)到多少秒時(shí),四邊形NBFG是菱形;
②當(dāng)四邊形NBFG是矩形時(shí),將矩形NBFG沿x軸方向平移使得點(diǎn)F落在拋物線上時(shí),直接寫出此時(shí)點(diǎn)F的坐標(biāo).
2
3
3
3
2
3
3
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/24 1:0:8組卷:367引用:10難度:0.1
相似題
-
1.如圖,二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.已知B(3,0),C(0,4),連接BC.
(1)b=,c=;
(2)點(diǎn)M為直線BC上方拋物線上一動(dòng)點(diǎn),當(dāng)△MBC面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)①點(diǎn)P在拋物線上,若△PAC是以AC為直角邊的直角三角形,求點(diǎn)P的橫坐標(biāo);
②在拋物線上是否存在一點(diǎn)Q,連接AC,使∠QBA=2∠ACO,若存在,直接寫出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說明理由.發(fā)布:2024/12/23 11:0:1組卷:604引用:2難度:0.2 -
2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3611引用:36難度:0.4 -
3.已知,如圖1,過點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.14
(1)求點(diǎn)A、B、F的坐標(biāo);
(2)求證:CF⊥DF;
(3)點(diǎn)P是拋物線y=x2對(duì)稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1
把好題分享給你的好友吧~~