試卷征集
加入會(huì)員
操作視頻

定義:對(duì)任意一個(gè)兩位數(shù)a,如果a滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“巴渝數(shù)”.將一個(gè)“巴渝數(shù)”的個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)兩位數(shù)與原兩位數(shù)的和與11的商記為f(a).例如:a=12,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)21,新兩位數(shù)與原兩位數(shù)的和為12+21=33,和與11的商為33÷11=3,所以f(12)=3.
根據(jù)以上定義,回答下列問題:
(1)填空:
①下列兩位數(shù):90、56、77中,“巴渝數(shù)”為
56
56

②計(jì)算f(25)=
7
7

(2)如果一個(gè)“巴渝數(shù)”b的十位數(shù)字是k,個(gè)位數(shù)字是2(k+1),且f(b)=11,請(qǐng)求出“巴渝數(shù)”b;
(3)如果一個(gè)“巴渝數(shù)”c,滿足c-4f(c)>40,求滿足條件的c的值.

【考點(diǎn)】因式分解的應(yīng)用
【答案】56;7
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:177引用:2難度:0.5
相似題
  • 1.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):
    ;
    (2)錯(cuò)誤的原因?yàn)椋?!--BA-->

    (3)本題正確的結(jié)論為:

    發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6
  • 2.閱讀理解:
    能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
    (2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4
  • 3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除(  )

    發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正