八年級數(shù)學(xué)興趣小組的同學(xué)在一起研究數(shù)學(xué)問題:已知直線y=2x+2與y軸、x軸分別交于A、B兩點,以B為直角頂點在第二象限作等腰Rt△ABC,請你參與解決以下問題:
(1)如圖1,請求出點C的坐標(biāo);
(2)如圖2,直線CB交y軸于E,在直線CB上取一點D,連接AD,若AD=AC,設(shè)△ABC的面積為S1,△ADE的面積為S2,請判斷S1與S2的大小關(guān)系,并說明理由;
(3)如圖3,設(shè)直線AC交x軸于M,P(-2.5,k)是線段BC上一點,在線段BM是否存在一點N,使直線PN平分△BCM的面積?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
【考點】一次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/2 20:0:1組卷:2187引用:4難度:0.4
相似題
-
1.閱讀材料:
如圖1,點M為AB中點,點A,點B坐標(biāo)分別為(x1,y1),(x2,y2).從平移角度分析,易得點A到點M的平移過程與點M到點B的平移過程相同.設(shè)點M坐標(biāo)為(m,n),則:,由此,我們可以得到點M與點A,B坐標(biāo)間的關(guān)系為:m-x1=x2-mn-y1=y2-n.m=x1+x22n=y1+y22
(1)結(jié)論應(yīng)用:若點A,點B坐標(biāo)分別為(-2,1),(4,5),則AB中點M坐標(biāo)為;
(2)方法遷移:如圖2,點M為AB三等分點(AM>BM),點A,點B坐標(biāo)分別為(x1,y1),(x2,y2),請你模仿材料中的方法,求點M與點A,B坐標(biāo)間的關(guān)系;
(3)理解運用:如圖3,線段AP與BC交于點P,點P恰好為BC中點,點M為AP的三等分點(AM>PM),點A,點B,點C坐標(biāo)分別為(x1,y1),(x2,y2),(x3,y3)利用以上結(jié)論求出點M與點A,B,C坐標(biāo)間的關(guān)系.發(fā)布:2024/12/23 16:0:2組卷:86引用:2難度:0.2 -
2.如圖,平面直角坐標(biāo)系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直線
過A點,且與y軸交于D點.y=-12x+2
(1)求點A、點B的坐標(biāo);
(2)試說明:AD⊥BO;
(3)若點M是直線AD上的一個動點,在x軸上是否存在另一個點N,使以O(shè)、B、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.發(fā)布:2024/12/23 19:30:2組卷:1182引用:3難度:0.4 -
3.如圖1,已知直線y=2x+2與y軸,x軸分別交于A,B兩點,以B為直角頂點在第二象限作等腰Rt△ABC
(1)求點C的坐標(biāo),并求出直線AC的關(guān)系式;
(2)如圖2,直線CB交y軸于E,在直線CB上取一點D,連接AD,若AD=AC,求證:BE=DE.
(3)如圖3,在(1)的條件下,直線AC交x軸于點M,P(-,k)是線段BC上一點,在x軸上是否存在一點N,使△BPN面積等于△BCM面積的一半?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.52發(fā)布:2024/12/23 17:30:9組卷:4485引用:6難度:0.3
把好題分享給你的好友吧~~