已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設(shè)m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當E、F、G、H分別是AB、BC、CD、DA四邊中點時,得到的四邊形EFGH的形狀是 菱形菱形,求得m=2020;
(2)為了解決這個問題,小貝同學(xué)采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,若再連續(xù)翻折兩次,從而找到解決問題的途徑,求得m的取值范圍.
①請在圖3中補全小貝同學(xué)翻折后的圖形(不寫作法);
②m的取值范圍是 20≤m<2820≤m<28.
【考點】四邊形綜合題.
【答案】菱形;20;20≤m<28
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/17 8:0:9組卷:52引用:1難度:0.3
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1465引用:7難度:0.3 -
2.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關(guān)系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~